

Mr. James Hou United States Environmental Protection Agency - Region 4 Atlanta Federal Center 61 Forsyth Street, SW Atlanta, Georgia 30303-8960 3240 El Camino Real Suite 200 Irvine California 92602-1385 Tel 714.730.9052 Fax 714.730.9345 www.arcadis-us.com

ARCADIS U.S., Inc.

Subject:

Revised Source Reduction Work Plan Chevron Chemical Superfund Site Orlando, Florida

Dear Mr. Hou:

On behalf of Chevron Environmental Management Company (Chevron EMC), ARCADIS U.S., Inc. (ARCADIS) is submitting a *Revised Source Reduction Work Plan* (Revised Work Plan) for the Chevron Chemical Superfund Site (the Site) located at 3100 North Orange Blossom Trail in Orlando, Florida. The original work plan was submitted on April 9, 2010. This work plan was revised to address comments provided by the United States Environmental Protection Agency (USEPA) in a memorandum dated October 14, 2010 (attached).

The USEPA's six comments and Chevron EMC's responses are provided below:

Comment 1:

Table 1 needs to cite references for the values used in the analysis of the dilution factor and the reference that includes actual test results for the site-specific partitioning coefficient values. I was able to find documentation of many of the dilution factor values with difficulty by online searching of EPA records many years old. The reader of the work plan should be able to readily access the documents containing site-specific data used to estimate soil cleanup goals.

Response to Comment 1:

An updated Table 1 with references is attached in the Revised Work Plan.

ENVIRONMENT

Date: January 31, 2010

Contact: Allen C. Just, P.E.

Phone: 714.730.9052 Ext 38

allen.just@arcadis-us.com

Our ref: B0046727.0000.00006

Comment 2:

In Table 1, the work plan needs to cite a reference for the "Florida Drinking Water Guideline" for the BHCs. Florida has developed groundwater cleanup target levels (GCTLs) for each of the BHCs and has an expectation that these concentrations are the benchmark for defining the acceptable groundwater concentrations at a point of compliance. The GCTLs differ from the "Florida Drinking Water Guideline" concentrations shown on Table 1. If not entirely an error, I presume that the "Florida Drinking Water Guideline" values cited in the report are some pre-GCTL values that no longer have relevance to the analysis of soil cleanup goals for groundwater protection.

Response to Comment 2:

An updated Table 1 with references is attached in the Revised Work Plan.

Comment 3:

Table 2 needs to identify the original report that documents the geotechnical testing results on the soils.

Response to Comment 3:

The laboratory reports with the geotechnical testing results are attached in Appendix E of the Revised Work Plan.

Comment 4:

Tables 3-6 show several samples with SPLP leachate BHC concentrations in samples where BHCs were undetected in the soil samples. One option for analyzing these results would be to assume a soil concentration (conservatively, half the reported detection limit) and calculate a Kd for those data, using the same procedure as that in the tables. I am not necessarily advocating this approach. However, it is possible to include evaluation of these results. This additional data analysis would add to the data set being considered and might give a better understanding of the partitioning conditions where there are very low soil concentrations. Therefore, the work

plan needs to either include that analysis or indicate that although it is a possible way to evaluate additional SPLP results, it was not used because of a valid technical reason, which should be explained.

Response to Comment 4:

A sensitivity analysis was conducted to assess the potential effects of including data in the calculation of site-specific K_d values for the following two scenarios:

- Samples with soil BHC concentrations that were below laboratory detection limits but had detected SPLP leachate BHC concentrations, and
- Samples with SPLP leachate BHC concentrations that were below laboratory detection limits but had detected SPLP leachate BHC concentrations.

For the sensitivity analysis, sample BHC concentrations below the laboratory detection limits were replaced with either the value of the laboratory detection limit (DL) or ½ the value of the laboratory detection limit (0.5 DL). The results of this sensitivity analyses are summarized in the following table:

Results of Sensitivity Analysis for Estimating Site-Specific K_d Values for BHC Isomers

Constituent	K _d Value Used (L/kg)	K _d Value for DL (L/kg)	K _d Value for 0.5 DL (L/kg)	Lowest K _d Value (L/kg)	Soil Target Concentration based on Lowest K _d Value (mg/kg)
α-ВНС	140.7	175.1	105.9	105.9	0.09
β-ВНС	45.5	42.4	23.0	23.0	0.039
δ-ВНС	38.8	117.8	72.6	38.8	No Change
γ-ВНС	53	235.5	1757.6	53	No Change

As shown in Table 7 of the Work Plan, estimated final area weighted average (AWA) concentrations of $\alpha\textsc{-BHC}$ and $\beta\textsc{-BHC}$ remaining in soil after completion of the Source Reduction Work Plan elements are below the soil target concentrations based on the lowest K_d Value estimated from the sensitivity analysis. Based on these results, the K_d values used to estimate target soil concentrations are conservative.

Comment 5:

I am familiar with the approach used to evaluate areas of soil that are assumed to require excavation. The procedure is acceptable, and the areas selected for excavation appear to be a conservative estimate of how to meet the intent of the soil target cleanup levels for groundwater protection (subject to use of the correct groundwater cleanup values; see comment 2 above). As a precautionary measure, I have evaluated all data points outside of the proposed soil removal areas to determine if there is a location or area where there is significant breakthrough of BHC contamination into the deeper soils that would not be addressed by the area weighted concentration approach. Such a condition would suggest a location with less effective attenuation (contaminant sorption) than pertains in areas where high soil contaminant concentrations are apparently "held up" in shallower soil layers. Based on this evaluation, I have no substantive concerns about the area weighted average process missing some soil contamination that is likely to be an ongoing threat to groundwater quality.

Response to Comment 5:

Comment Noted

Comment 6:

Appendix B needs to somehow indicate that the shaded sample result (e.g. SB-98, β BHC 0-2 feet deep) represents the sample defining the cutoff point for samples requiring excavation under the proposed approach for defining polygons requiring excavation.

Response to Comment 6:

A Revised Appendix B with an explanation of shaded cells is attached in the Revised Work Plan.

In addition, ARCADIS has added Sections 4.2.1 and 4.4.1 in the *Revised Work Plan*. These sections discuss the delineation and characterization of elevated chlordane concentrations (6,100 mg/kg) detected in soil sample SB-137. A total of 26 soil samples were collected from 19 borings and were analyzed for chlorinated pesticides. Analytical results for these samples are presented in Tables 8 and 9. Based on these results, approximately two cubic yards of soil have been determined to be characteristically hazardous and will be removed as proposed in the *Revised Work Plan*.

Upon approval of the *Revised Work Plan*, Chevron EMC would like to schedule an onsite meeting to discuss any outstanding issues and the implementation schedule. Please contact Mark Stella of Chevron EMC at 713.432.2643 or Allen Just of ARCADIS at 714. 730.9052 Ext. 38 if you should have any questions concerning the Site.

Sincerely,

ARCADIS U.S., Inc.

Allen C. Just, P.E. Principal Engineer

Copies:

Mark Stella, Chevron EMC Susan Tobin, TASK Environmental Karen Milicic, FDEP

Matthew P. Coglianese, Rasco Klock Reininger Perez Esquenazi Vigil & Nieto PL, Coral Gables, FL

U.S. EPA REGION IV

SDMS

POOR LEGIBILITY

PORTIONS OF THIS DOCUMENT MAY BE DIFFICULT TO VIEW DUE TO THE QUALITY OF THE ORIGINAL.

TO MAKE THE DOCUMENT READABLE, TRY ONE OR MORE OF THE FOLLOWING:

From the Displays Settings in Windows Control Panel:

- 1. Set the Color Quality to the highest available: 24 bit or 36 bit.
- 2. Increase or decrease the Screen resolution.

From the Monitor/Display Controls:

- 1. For dark image page, increase the brightness and decrease the contrast.
- 2. For light image page; decrease the brightness and increase the contrast.

** PLEASE CONTACT THE APPROPRIATE RECORDS CENTER TO VIEW THE MATERIAL **

Chevron EMC

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

January 2010

Chevron EMC

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

January 2010

Allen C. Just, P.E. Principal Engineer

Julie Sueker, PhD, P.H., P.E.

Technical Expert

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

Prepared for: Chevron EMC

Prepared by: ARCADIS U.S., Inc. 3240 El Camino Real Suite 200 Irvine California 92602-1385 Tel 714.730.9052 Fax 714.730.9345

Our Ref.: B0046727.0000.00006

Date: January 31, 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introdu	iction		1
2.	Target	Soil C	oncentrations	3
	2.1		ating an Appropriate Dilution Factor for the Soil Leaching to indwater Pathway	3
	2.2	Estim	ating a Target Soil Leachate Concentration	4
	2.3	Calcu	lation of the Target Soil Concentration for Subsurface Soil	5
3.	Area-W	eighte	ed Average Remediation Approach	8
	3.1	Applic	cation of the AWA Approach in Delineating Soil Removal Areas	10
4.	Source	Redu	ction Plan	12
	4.1	Pre-M	flobilization Activities	12
	4.2	Wast	e Characterization	12
		4.2.1	Nonhazardous Soil	12
		4.2.2	Hazardous Soil	13
	4.3	Mobil	ization/Site Preparation	13
	4.4	Soil E	excavation/Removal	15
		4.4.1	Hazardous Soil	15
		4.4.2	Nonhazardous Soil	16
	4.5	Loadi	ng, Transportation, and Disposal	16
	4.6	Backf	ill/Topsoil Placement	17
	4.7	Final	Grading and Seeding	18
	4.8	Field	Documentation and Reporting	18
5.	Refere	nces		20
Tal	bles			
	Table	1	Input Parameter Values for Estimating Target Soil Concentrations for BHC Isomers in Soil	
	Table	2	Site-Specific Soil Geotechnical Data	
	Table	3	Partition Coefficient Calculations for $\alpha\text{-BHC}$	
	Table	4	Partition Coefficient Calculations for 8-BHC	

ARCADIS Table of Contents

Table 5	Partition Coefficient Calculations for δ-BHC
Table 6	Partition Coefficient Calculations for γ -BHC
Table 7	Polygons for Removal to Meet BHC, Toxaphene, and Chlordane Target Soil Concentrations
Table 8	Summary of Soil Analytical Results Delineating the Hazarous Soil Area
Table 9	Summary of TCLP Results

Figures

Figure 1	Topographic Map of Site Location and Vicinity
Figure 2	Site Plan
Figure 3	Soil BHC Concentration versus SPLP Leachate Concentration alpha-BHC
Figure 4	Soil BHC Concentration versus SPLP Leachate Concentration beta-BHC
Figure 5	Soil BHC Concentration versus SPLP Leachate Concentration delta-BHC
Figure 6	Soil BHC Concentration versus SPLP Leachate Concentration gamma-BHC
Figure 7	Proposed Hazardous Soil Excavation between 0 to 2 Feet
Figure 8	Proposed Nonhazardous Soil Excavation between 0 to 2 Feet
Figure 9	Proposed Nonhazardous Soil Excavations between 2 to 5 Feet
Figure 10	Proposed Nonhazardous Soil Excavations between 5 to 7 Feet

Appendices

Α	Site Plans with Analytical Results
В	Area-Weighted Average Details
С	On-site Water Treatment and Disposal
D	Approved Waste Profiles
Ε	Soil Geotechnical Data Analysis Laboratory Repor

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

1. Introduction

On behalf of Chevron Environmental Management Company (Chevron EMC), ARCADIS U.S., Inc., (ARCADIS) has developed this work plan to conduct source reduction activities at the Chevron Chemical Superfund Site (the Site) located at 3100 North Orange Blossom Trail in Orlando, Orange County, Florida (Figures 1 and 2). This Source Reduction Work Plan (Work Plan) was prepared in response to a request from the United States Environmental Protection Agency (USEPA). Due to historic operations at the Site, the soil and groundwater were impacted by chlorinated pesticides. These pesticides include hexachlorocyclohexane (BHC; α-BHC, β-BHC, δ-BHC, and γ-BHC, collectively referred to herein as BHC), toxaphene, and chlordane. Based on the groundwater monitoring data collected at the Site, the BHCs appear to be leaching from unsaturated soil to groundwater. Source reduction in the form of soil excavation is expected to mitigate this transport pathway and thereby sufficiently reduce the loading of BHC from soil to groundwater to meet remedial objectives for groundwater. The site-specific groundwater cleanup levels for α -, β -, and γ -BHC (Lindane) were established by the USEPA and presented in the Record of Decision (ROD) dated May 22, 1996. The groundwater cleanup levels for these BHC isomers are 0.05, 0.1, and 0.2 µg/L, respectively. Since the ROD did not include a groundwater cleanup level for δ-BHC, a groundwater cleanup goal of 2.1 μg/L was selected based on the Florida Administrative Code (FAC) Chapter 62.777 Groundwater Cleanup Target Levels (GCTLs).

Leaching of toxaphene and chlordane to groundwater is not considered to be a major transport pathway for these constituents. However, concentrations of chlordane in some locations exceed the target soil concentrations of 50 mg/kg and 100 mg/kg for chlordane in the 0 to 1 and 1 to 10 feet below ground surface (ft bgs) depth intervals, respectively, as set forth in the ROD. In addition, elevated toxaphene concentrations were detected during recent site assessment activities. The proposed source reduction activities will include the areas with elevated chlordane and toxaphene concentrations.

This Work Plan presents the method used to derive site-specific target soil concentrations (TSC) (i.e., numeric cleanup goals) for BHC in soil that are protective of groundwater from the leaching of BHC from the soil to groundwater pathway. In addition, this Work Plan presents an area-weighted average (AWA) approach for utilizing the TSCs for BHC isomers in a source reduction (excavation) program. For chlordane, all soil with chlordane concentrations above the levels set forth in the ROD will be included in the source reduction program. The AWA approach provides a

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

method for estimating total mass of constituents of concern (COCs) in soil, estimated mass removed, estimated mass remaining, and average COC concentrations that will remain in soil after source reduction activities have been completed.

As described in the following sections, the proposed source reduction activities includes the removal of approximately 3,153 cubic yards (approximately 4,800 tons) of soil impacted with BHC, toxaphene, and chlordane resulting in removal of 94% of the total BHC mass, 91% of the total toxaphene mass, and 91% of the total chlordane mass estimated to be present in soil in the 0 to 7 ft bgs depth interval. After completion of source reduction activities, final AWA soil BHC concentrations in the 0 to 2, 2 to 5, and 5 to 7 ft bgs depth intervals will be below the respective TSCs for each BHC isomer. This source reduction plan is expected to remove the remaining source material that is having an adverse impact on the concentrations of BHCs in site groundwater and will be protective of human health and the environment. Groundwater monitoring will be continued at the Site to evaluate the efficacy of the source reduction activities.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

2. Target Soil Concentrations

Target soil concentrations for BHC isomers in site soil were derived following methods described in the USEPA soil screening guidance and associated technical background documents (USEPA, 1996). These methods included the use of site-specific leaching measurements for calculating target soil concentrations that are necessary to achieve a target soil leachate concentration that is protective of groundwater. The derivation of these target soil and soil leachate concentrations followed the conservative assumption that a constituent in vadose-zone soil leaches to groundwater and is then diluted in groundwater.

The following steps were performed to derive site-specific TSCs for BHC isomers in site soil:

- Estimate a site-specific dilution factor for soil leachate as it enters groundwater.
- Calculate the target soil leachate concentration for BHC that would be protective of groundwater by achieving specific groundwater remedial goals.
- Calculate the TSC for BHC in soils based on the target soil leachate concentration.

The following sections describe how these steps were applied to determine sitespecific TSCs for BHC isomers in soil.

2.1 Estimating an Appropriate Dilution Factor for the Soil Leaching to Groundwater Pathway

Precipitation and other sources of recharge water infiltrating through unsaturated soil can leach COCs from impacted soil. The dilution factor (DF) describes the amount of dilution that occurs when COCs in soil leachate mix with groundwater (USEPA, 1996). The DF was calculated by dividing the estimated annual volume of groundwater that passes beneath the impacted area by the estimated annual volume of recharge moving through the unsaturated zone. Derivation of a site-specific DF required an understanding of the following site-specific parameters:

Aquifer hydraulic gradient, i,

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

- · Aquifer hydraulic conductivity, K,
- Aquifer porosity, η,
- Aguifer thickness, da,
- · Aguifer mixing zone depth, d,
- · Source length parallel to groundwater flow, L, and
- · Recharge (infiltration) rate, I.

Site-specific values for these parameters are provided in Tables 1 and 2. A site-specific DF of was calculated following USEPA soil screening guidance methods for the migration to groundwater pathway (USEPA, 1996):

$$DF = 1 + (K \times i \times d) / (I \times L)$$
 [Eq. 1]

Where the aquifer mixing zone depth is estimated from (USEPA, 1996):

$$d = (0.0112 \times L^{2})^{0.5} + d_{a} \{1 - \exp[(-L \times I)/(K \times I \times d_{a})]\}$$
 [Eq. 2]

A site-specific DF of 17.0 was estimated using site-specific input values (Table 1). This DF value is less than the USEPA default DF of 20 (UESPA, 1996) and is considered to be a reasonable value to use for this site.

2.2 Estimating a Target Soil Leachate Concentration

To determine the target soil leachate concentration that is necessary to achieve remedial goals for groundwater, the groundwater criteria for BHC were multiplied by the site-specific DF to yield target soil leachate concentrations for BHC in soil leachate. Using the groundwater criteria described above, and the site-specific DF of 17, the target soil leachate concentrations for α -, β -, δ -, and γ -BHC are 0.85, 1.70, 35.7, and 3.40 μ g/L, respectively. To mitigate the transport of BHC from soil to groundwater, the BHC concentrations in leachate from vadose zone soil need to be equal to or less than the target soil leachate concentrations to be protective and meet remedial goals for groundwater.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

2.3 Calculation of the Target Soil Concentration for Subsurface Soil

To estimate an appropriate target soil concentration, the target BHC concentrations for soil leachate were combined with site-specific synthetic precipitation leaching procedure (SPLP) data and site-specific soil properties data. Results from the SPLP analysis were used to derive site-specific partition coefficients, or " K_d " values, for isomers of BHC in unsaturated soil. A partition coefficient is the ratio of the sorbed-phase concentration to the dissolved-phase concentration at equilibrium and provides a measure of the relative ease at which contaminants will move between the sorbed and dissolved phases. Under field conditions, partition coefficients can vary significantly between sites due to differences in soil properties, the mixture of contaminants present, and even the age of the release. Therefore, development of site-specific K_d values provides a greater level of confidence in the calculated soil target cleanup concentrations than would use of published values.

Twenty soil samples were collected from various locations and depths within the source area and submitted for SPLP analysis. Based on existing soil BHC concentration data, the sampling strategy was devised to provide a representative range of BHC soil concentrations and soil types to evaluate potential effects of soil BHC concentration and soil type on BHC leaching. Site-specific SPLP data were used to estimate site-specific K_d values for each of the BHC isomers using the following equations (Hawaii Department of Health (HDOH) 2007).

$$K_d (L/kg) = C_{sorbed} (\mu g/kg) / C_{solution} (\mu g/L)$$
 [Eq. 3]

Where:

 C_{sorbed} is the concentration of BHC sorbed to soil after the SPLP test; and

C_{solution} is the resulting concentration of BHC in the SPLP solution.

The sorbed concentration of BHC is calculated as follows:

$$C_{\text{sorbed}} (\mu g/kg) = \text{Mass}_{\text{sorbed}} (\mu g) / \text{Sample Mass (kg)}$$
 (Eq. 4)

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

Where:

 ${\sf Mass}_{\sf sorbed}$ is the mass of BHC still sorbed to soil following the SPLP test.

The mass of the soil sample used in the SPLP test was 100 grams or 0.1 kg (USEPA 1994). The mass of BHC sorbed to the soil was calculated by subtracting the mass of BHC that went into the SPLP test solution from the initial, total mass of BHC in the soil sample:

$$Mass_{sorbed} (\mu g) = Mass_{total} (\mu g) - Mass_{solution} (\mu g)$$
 (Eq. 5)

Where:

Mass_{total} is the original, total mass of BHC in the soil sample; and

Mass_{solution} is the mass of BHC in the SPLP test solution.

The total mass of BHC in the soil sample is calculated as:

$$Mass_{total} (\mu g) = C_{total} (\mu g/kg) \times Sample Mass (kg)$$
 (Eq. 6)

Where:

C_{total} is the reported total concentration of BHC in the soil sample that was used in the SPLP test (tested on a split sample).

The mass of BHC in the SPLP test solution is calculated as:

Mass_{solution} (
$$\mu$$
g) = C_{solution} (μ g/L) × Solution Volume (L) (Eq. 7)

The volume of solution used in the SPLP tests was two liters (USEPA 1994).

Estimated sample-specific, average, and geometric mean K_d values are provided in Tables 3 through 6. Graphs of total soil BHC concentration versus SPLP leachate BHC concentrations are provided in Figures 3 through 6. As shown, geometric mean K_d values were 140.7, 45.5, 38.8, and 53.0 L/kg for the α -, β -, δ -, and γ -BHC isomers, respectively.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

Geometric mean K_d values were used for estimating target soil concentration for unsaturated soil as follows:

$$TSC = TSL \times [K_d + (\theta_w + (\theta_a^* H')/\rho_b)]$$
 (Eq. 1)

Where:

TSC is the target soil concentration to be protective of groundwater;

TSL is the target soil leachate concentration to be protective of groundwater;

 θ_{w} is the water-filled porosity,

 θ_a is the air-filled porosity,

H' is the dimensionless Henry's Law coefficient, and

 ρ_b is the soil bulk density in kilograms per liter (kg/L).

The above approach was used to derive site-specific target concentrations for α -, β -, δ -, and γ -BHC in site soil of 0.120, 0.077, 1.386, and 0.180 mg/kg, respectively.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

3. Area-Weighted Average Remediation Approach

The calculated target soil concentrations for BHC were used in an AWA approach to devise an appropriate remedy that will be protective of groundwater. The AWA approach prioritizes which actions and locations would efficiently generate the greatest BHC mass removal for the smallest soil volume. The AWA approach is a technically sound, recognized scientific method used to prioritize and establish the extent of source remediation, and precedence for the approach has been set at several USEPA, RCRA, and State-led sites. The AWA approach was also used to devise an appropriate remedy that will meet the ROD-based TSCs for chlordane and the RSBL for toxaphene.

To organize the data and provide a spatial context for soil delineation, remedial design, and construction implementation, an overall "remediation unit" was created based on an area of defined soil impacts at the Site (Appendix A). This remediation unit is defined by the Chevron property boundary and by locations with BHC concentrations below the laboratory detection limit. Using soil characterization data developed during multiple site investigations conducted in 2003, 2007, and 2008, AWA soil concentrations within the remediation unit were calculated by first developing Thiessen polygons that are considered "zones of influence" around individual soil sampling The Thiessen polygons were created by establishing lines that are equidistant from adjacent soil sampling locations, with the number of sides of the polygon being a function of the number of neighboring samples present. Thiessen polygons for BHC, toxaphene, and chlordane concentrations were developed for three soil depth intervals; 0 to 2 ft bgs, 2 to 5 ft bgs, and 5 to 7 ft bgs (Appendix A). Constituent-specific remediation units were developed for each depth interval based on the extent of detected concentrations. For example, the remediation unit for α -BHC in the 0 to 2 ft bgs depth interval is defined by the extent of detected concentrations of α-BHC in this depth interval bounded by polygons with α-BHC concentrations below detection. For chlordane, remediation units are defined by the extent of detection above the respective ROD value for each depth interval, surrounded by polygons with concentrations below the respective ROD value.

The AWA concentration for each depth interval unit was calculated as follows:

 Assign the soil concentration of the sample in the center of each Thiessen polygon to the entire area of the polygon. If multiple soil concentrations are available for a single sampling location (i.e., multiple samples were collected from the upper two feet), the maximum BHC isomer concentration was

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

assigned to the polygon. The detection limit was used as the soil concentration for non-detect sample locations. For BHC concentration below the laboratory detection but with elevated detection limits due to sample dilution (K qualified data), ½ the detection limit was used as the soil concentration for non-detect sample locations.

- Assign a value to each remediation unit for the individual constituents that equates to the soil concentration in each polygon multiplied by its surface area. (The weighted polygons have the dimensions of square feetmilligrams per kilogram [ft²-mg/kg]).
- 3) Sum the weighted polygons. Divide the sum of the weighted areas by the total surface area of all the polygons within the remediation unit for each constituent. The resulting quotient is the AWA concentration.

This AWA concentration calculation is a conservative estimate of the BHC distribution in the surface in the following ways:

- 1) Assigning the highest concentration of the central soil boring to every Theissen polygon over-estimates the mass, and this high bias is applied to every polygon. By using the maximum detected value at each location for AWA calculations, more mass is assigned to each polygon than if average concentrations at each location had been used. Using maximum concentrations results in a higher AWA concentration, which then potentially requires removal of additional polygons to achieve remedial goals.
- 2) Laterally, representing mass distribution with Theissen polygons is comparable to linearly interpolating between data points. Because concentrations in environmental media tend to decline exponentially with distance from the source data point rather than linearly, contouring linearly tends to overestimate the mass outside of high concentration areas. Kriging approaches use an exponential function for contouring concentrations between data points. The linear interpolation technique of the Theissen approach is more conservative, i.e. results in a greater volume for soil removal, than the exponential Kriging approach.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

3.1 Application of the AWA Approach in Delineating Soil Removal Areas

Application of the AWA approach in delineating soil removal areas is conducted in the following manner. If the AWA soil BHC concentration for a particular soil depth interval is less than the TSC, then no further action is planned for that depth interval. If the AWA soil BHC concentration for a particular soil depth interval is greater than the TSC, then polygons with the highest concentrations or mass will be excavated until the AWA is at or below the TSC. In the case of β-BHC and δ-BHC, a total mass reduction of 90% was targeted, which resulted in planned removal of polygons beyond what was indicated based solely on the AWA approach. As described in more detail below, using this approach, approximately 94% of the total estimated BHC mass, 91% of the total estimated toxaphene mass, and 91% of the total estimated chlordane mass in soil in the 0 to 7 ft bgs depth interval will be excavated and transported off-site for disposal. Actual mass removed may vary slightly as this estimate assumes equal distribution of concentration, and therefore mass, throughout the polygons, and is calculated based on the maximum soil concentration for each sampling location and depth interval.

The procedure for identifying the polygons to be excavated for each BHC isomer is as follows:

- Sort the weighted polygons in descending order of constituent mass in the polygon.
- Replace the soil concentration of the highest weighted polygon with zero.
 This represents excavating the impacted soil from the polygon, and backfilling the polygon with clean fill.
- 3) Recalculate the AWA. If the AWA is still above the TSC for each constituent, repeat Steps 1 and 2 with additional polygons until the recalculated value is below the TSC for each constituent. The new AWA concentration reflects the fact that the total soil area exposed to rainfall and infiltration has not changed, but the mass available for transport to groundwater has been reduced through source removal.
- 4) Optimize polygon removal for all BHC isomers based on comparison of planned polygon removal for the individual BHC isomers. Although an individual polygon may rank high for an individual BHC isomer, substitution of polygons based on concentrations of other BHC isomers may be sufficient to meet overall remedial objectives for each isomer.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

For chlordane, all polygons with chlordane concentrations greater than levels set forth in the ROD were included in the planned excavation.

Results of the AWA approach and proposed polygon excavation volumes are provided in Table 7. Detailed data sheets showing AWA calculations are provided in Appendix B. As shown in Table 7, removal of approximately 1,364 cubic yards of BHC-impacted soil from 55 polygons in the 0 to 2 ft bgs depth interval will result in removal of 98% of the BHC mass, 93% of the toxaphene mass, and 96% of the chlordane mass in the 0 to 2 ft bgs depth interval. Removal of approximately 1,314 cubic yards of BHC-impacted soil from 41 polygons in the 2 to 5 ft bgs depth interval will result in removal of 83% of the BHC mass, 82% of the toxaphene mass, and 75% of the chlordane mass in the 2 to 5 ft bgs depth interval. Removal of approximately 475 cubic yards of BHC-impacted soil from 24 polygons in the 5 to 7 ft bgs depth interval will result in removal of 71% of the BHC mass, 63% of the toxaphene mass, and 29% of the chlordane mass in the 5 to 7 ft bgs depth interval.

Overall, removal of approximately 3,153 cubic yards of BHC-impacted soil from 120 polygons in the 0 to 2, 2 to 5, and 5 to 7 ft bgs depth intervals will result in removal of 94% of the total BHC mass, 91% of the total toxaphene mass, and 91% of the total chlordane mass in the 0 to 7 ft bgs depth interval. Final AWA soil BHC concentrations in the 0 to 2, 2 to 5, and 5 to 7 ft bgs depth intervals will be below the respective TSCs for each BHC isomer. This excavation plan is expected to significantly reduce the remaining source material which is having an adverse impact on the dissolved-phase BHC concentrations beneath the Site, and will be protective of human health and the environment.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

4. Source Reduction Plan

This section provides a work plan for completing the proposed source reduction activities at the Site. The scope of work includes the excavation, proper management, transportation and disposal of approximately 3,153 cubic yards of pesticide-impacted soils.

4.1 Pre-Mobilization Activities

Prior to initiating the source reduction activities, ARCADIS and its subcontractors will complete the following tasks:

- Update the existing Environmental Health and Safety Plan (E-HASP). The E-HASP will include the appropriate Job Loss Analysis (JLAs) to address the proposed remedial excavation activities.
- Identification and sampling of potential backfill materials.
- Proper abandonment of groundwater monitoring wells MW-24S, MW-24D, MW-36S, MW-36D, MW-37S, MW-37D, MW-50S, and MW-50D, which are located within or adjacent to the proposed excavation areas. Piezometers located around the MW-10 well cluster may also be abandoned. The abandonment activities will be performed by a Florida-licensed water well contractor.
- Inspection of large trees near the excavation areas; development of a tree management plan to preserve large oak trees and remove non-native trees.

4.2 Waste Characterization

4.2.1 Nonhazardous Soil

On December 23, 2009, one composite soil sample was prepared with representative soil sample aliquots collected from each area of contaminated soil and depth to be excavated (with the exception of the polygon around SB-137). The sample was submitted to SunLabs, Inc., in Tampa, Florida for chemical analysis. The sample was analyzed for volatile organic compounds (VOCs), semi-VOCs, metals, pesticides, and herbicides following toxicity characteristic leaching procedure (TCLP) sample preparation. In addition, the sample was analyzed for reactivity and corrosivity.

Revised Source Reduction Work Plan

ARCADIS

Chevron Chemical Superfund Site Orlando, Florida

The analytical results and waste profile were submitted to the Waste Management Facility in Okeechobee, Florida for review and acceptance. Based on the composite sample results, the soil to be excavated from the site (except as described below) is not a characteristic hazardous waste. The approved waste profile (#105183FL) and laboratory report is included as Appendix D.

4.2.2 Hazardous Soil

Based on the elevated chlordane concentrations (6,100 mg/kg) detected in the original SB-137 sample location (see Table 8), a composite soil sample (CO-SO-COMP-1) was collected from this area between 1 to 2 feet bgs and analyzed for chlorinated pesticides following TCLP sample preparation. The leachable chlordane concentration exceeded the 40 CFR Part 261.24 regulatory level of 0.03 milligrams per liter (mg/l). To further delineate the chlordane impacts at sample location SB-137, a total of 26 soil samples were collected from 19 borings and analyzed for chlorinated pesticides. Analytical results for these samples are presented in Table 8. Based on the total chlorinated pesticide concentrations, five of the samples were selected for TCLP extraction and analysis for chlorinated pesticides. The TCLP results are summarized in Table 9. None of the additional TCLP analyses indicated leachable chlorinated pesticides exceeding their respective regulatory levels.

The analytical results for the composite soil sample collected from the SB-137 area on April 8, 2010 and a completed waste profile form were submitted to Veolia Environmental Services in Port Arthur, Texas for review and waste acceptance. Based on the composite sample results, the soil, when excavated, will be a hazardous waste by characteristic of toxicity (RCRA waste code D020). The approved waste profile and laboratory report is included as Appendix D.

4.3 Mobilization/Site Preparation

The Site is currently a vacant grass lot. In order to facilitate efficient load out and backfill operations, temporary access roads will need to be constructed at the Site for tractor trailers. Temporary access roads and a gravel parking area (for the short term onsite staging of tractor trailers) will reduce the impacts that wet conditions may have on the Site during the excavation activities, minimize the potential of tracking out soil on public roads, and allow tractor trailers to be positioned at the Site to facilitate safe and efficient loading and unloading (refer to Figure 2). The access road will consist of a 6-inch to 8-inch thick layer of aggregate placed on top of a layer of geofabric. The geofabric will provide a better surface on which to construct the access road. The

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

onsite traffic would be directed in a one way loop (counter clock-wise flow direction) to minimize backing and potential traffic hazards at the Site.

While not anticipated to be encountered, a thorough assessment of potential underground utilities will be performed including a utility one-call, site inspection, and the completion of a private utility locate survey.

Invasive species trees and small trees (trunk diameter at eye level of 6 inches or less) that encroach on the excavation areas will be removed. The trees to be removed include an *Enterolobium cyclocarpum* (ear tree) that was damaged by high winds, and a small maple tree that was also damaged by high winds. A Florida arborist will inspect the trees relative to the excavation areas and determine which others trees should be removed. In order to preserve the two large oak trees at the Site, a Florida Arborist will establish work zones around the oak trees. The purpose of which is to preserve the root structure and the trees.

Several drums containing soil cuttings from previous investigations are staged in areas to be excavated. During the excavation process, these drums of cuttings will be emptied into stockpiled soil, and will be loaded out with the soil for disposal. The empty drums will be crushed and transported to the Waste Management facility located in Okeechobee, Florida for disposal.

The purge water treatment system is in close proximity to the excavation and relocation of the system may be necessary. Granular activated carbon (GAC) drums will be removed from the storage shed, and emptied into the soil stockpile for loading, transportation and disposal. The GAC drums will be crushed and transported to the Waste Management facility located in Okeechobee, Florida for disposal. The water treatment tanks will be removed and preserved for future use. The water treatment system shed will be moved or disposed of, depending on its condition.

Monitor wells to remain on-site near work or transportation areas will be flagged with 10-foot polyvinyl chloride (PVC) poles that have been painted bright orange and marked with fluorescent tape. Barricades will also be placed around the monitor wells. Monitor wells that are damaged during the source reduction activities will be abandoned by a licensed Florida water well contractor, and replaced, if needed.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

4.4 Soil Excavation/Removal

The proposed excavation limits are polygon-shaped and vary in depth. On a daily basis, the areas to be excavated will be delineated using a Trimble XPRO global positioning system (GPS) instrument or equivalent and staked. In order to maximize excavation controls and minimize project costs, each of the excavation areas will be completed in steps and will require planning and sequencing. The proposed sequence is to work from north to south across the Site. This sequencing approach should provide a cost effective approach to safely and efficiently complete the proposed excavation activities.

The weather conditions will be monitored on a daily basis. If rain is anticipated, clean fill material will be imported to construct stormwater diversion berms around the proposed work area in an effort to minimize the water entering the excavations. Clean fill will be stockpiled on site to minimize the amount of time needed to build the berms. The excavation activities will be stopped in the event of rain sufficient to result in significant run-off and/or lightning. All stockpiled soil will be covered with 6 mil plastic sheeting.

In the event that stormwater accumulates within an excavation, de-watering and onsite treatment of the stormwater may be required. A contingency plan for these activities is included in Appendix C. If the excavation is completed and the stormwater accumulation is limited, then crushed rock and geofabric can be used during the backfill process to eliminate the need for de-watering.

The onsite workers will be monitored for the potential negative effects of excessive heat and humidity. The workers will also be instructed on the symptoms of heat stress and heat stroke. An ample supply of drinking water will be available to the workers.

A dust monitoring and mitigation plan has been developed to protect the onsite workers and potential offsite receptors from exposure. If dust or odors become an issue, water and/or a vapor suppressant will be used to mitigate this potential hazard.

4.4.1 Hazardous Soil

Prior to conducting the main source reduction excavation activities, approximately two cubic yards of soil, which when excavated will be considered a hazardous waste by the characteristic of toxicity, will be removed from the vicinity of SB-137 using a backhoe. The lateral extent of the soil that will be a hazardous waste upon excavation is defined

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

by sample locations SB-137-M, SB-137-R, SB-137-Q, SB-137-F, SB-137-N, and SB-137-O; and the vertical extent is from 0 to 2 feet bgs (see Figure 7). All soil removed from this area will be placed directly into 55-gallon drums (approximately eight drums total) and staged in a secondary containment structure for transportation to the Veolia Environmental Services Port Arthur facility for treatment by incineration and land disposal of treated soil residue. All drum loading operations will take place over plastic sheeting to contain spills. The Veolia Port Arthur facility (US EPA ID: TXD000838896) is permitted to accept RCRA, TSCA and CERCLA waste for treatment by rotary kiln incineration.

4.4.2 Nonhazardous Soil

Following removal of soil that is hazardous waste by characteristic of toxicity, the remaining contaminated soil defined by the AWA approach described in Section 3.1 will be excavated. The lateral and vertical extents of the contaminated soil excavation are presented in Figures 8 through 10.

The soil will be excavated with a tracked excavator fitted with a sand blade, with the exception of soil in the immediate vicinity of large tree roots. Soil within the root zone of trees to remain on-site will be excavated by hand and with an air spade. Excavation work in the root zone will be performed under the supervision of a Master Arborist. Contaminated soil (approximately 3,151 cubic yards) will be excavated and loaded directly into dump trucks, where possible. Soil may be stockpiled temporarily within excavation areas (i.e., on top of contaminated soil to be excavated) or in a lined stockpile area, depending upon the sequencing of trucks. No more than ½ of a day's production quantity will be stockpiled at any time. Soil stockpiles will be covered at all times, unless active loading is underway.

4.5 Loading, Transportation, and Disposal

As stated above, the waste was pre-characterized in-situ and a waste profile was approved by the disposal facility. This will allow excavation to proceed unhindered and support the efficient loading of the material for transportation to the disposal facilities. The temporary stockpiling of soil may be required to expedite the loading process. The stockpiles will be placed on 6 mil plastic sheeting. The stockpile areas will be bermed with clean soil and/or hay bales covered by plastic sheeting to minimize the run-on of stormwater. After the trucks are loaded, the stockpile areas will be covered with tarps.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

Transportation services will be integrated fully into the project team, including the completion of a site orientation and an abbreviated Loss Prevention System (LPS) training session prior to transporting materials for the project. The operation of tractor trailers on roads to and from the Site offers some of the greatest health and safety hazards associated with the project. A Journey Management Plan (JMP) will be prepared for the project. The JMP will identify potential hazards along the transportation route.

Prior to departing the Site, each truck will be brushed to remove loose dirt, inspected, and weighed using portable scales. Field personnel will ensure that all necessary manifest paperwork is completed (signed by Chevron EMC and transporter), and document at a minimum: license plate number, truck number, weight, and date/time. In addition, field personnel will document daily and cumulative volumes of soil excavated and transported off-site. A load summary will be obtained from the landfill daily to synchronize and reconcile landfill and site records.

To facilitate the safe access and egress of trucks from the Site, highly-visible, temporary highway signage and a radio-equipped flagger will be used to alert traffic to slow moving trucks entering and exiting the Site. Additionally, flagger responsibilities will be to facilitate the safe passage of pedestrians that may walk in front of the entrance to the Site. Procedural traffic controls, such as permitting only onsite truck staging, proper spacing and sequencing of trucking, and allowing only right turns in or out the Site (preventing trucks from crossing any lanes of traffic to enter or exit the Site), are other good means to enhance the traffic safety at the Site.

Excavated soil that is not hazardous waste will be taken to the Waste Management, Inc. (WMI) facility in Okeechobee, Florida for disposal. The WMI Okeechobee facility includes a RCRA Subtitle D, double-lined landfill with leachate collection. Leachate from the facility is either transported to a public wastewater treatment facility, or treated on-site by land-fill gas heat generated evaporation. The Okeechobee landfill is approved for disposal of CERCLA waste and other special wastes that are not hazardous waste as defined by 40 CFR Part 261.

4.6 Backfill/Topsoil Placement

Excavations will be backfilled with clean sandy soil in a timely manner. In order to increase efficiency, backfill will be dumped directly into or immediately adjacent to the excavation whenever possible. Any stockpiled backfill material will be covered with 6 mil plastic sheeting, segregated and clearly labeled in order to distinguish between

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

backfill and contaminated soil. Field personnel will document daily and cumulative volumes of backfilled material. In the event that an excavation remains open temporarily, orange safety fence will be installed around the excavation perimeter. A 6-inch thick layer of topsoil will be placed over the final backfill surface to facilitate revegetation of the excavated areas.

4.7 Final Grading and Seeding

Site restoration activities will include grading all disturbed areas at the Site and the placement of a grass seed/fertilizer mixture that is native to the area. Access roads may be left in place to facilitate future activities at the Site.

4.8 Field Documentation and Reporting

In addition to Health and Safety (H&S) related documentation, field personnel will also complete the following documentation on a daily basis:

- · Personnel and Visitors Log documenting:
 - ARCADIS Personnel Onsite,
 - Subcontract Personnel Onsite,
 - Regulators or Clients Onsite;
- Equipment Safety Checklists for all equipment present and/or used by contractors;
- Daily Activities Log, documenting occurrences of significance;
- Meeting Summary forms, documenting meeting content and attendees;
- Waste tracking logs and transportation manifests;
- Instrument Calibration forms; and
- Daily Air Monitoring Log.

Upon completion of the source reduction activities, ARCADIS will prepare a summary report to document the field activities. This report will include site plans showing the

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

excavation limits and depths, daily H&S and field logs, and waste manifests and disposal certificates.

Revised Source Reduction Work Plan

Chevron Chemical Superfund Site Orlando, Florida

5. References

Hawaii Department of Health (HDOH), 2007. Use of laboratory batch tests to evaluate potential leaching of contaminants from soil (update to November 2006 technical presentation). 2007-223-RB. April 12.

United States Environmental Protection Agency (USEPA), 1996. Soil Screening Guidance: User's Guide. EPA/540/R-96/018.

Tables

TABLE 1

INPUT PARAMETER VALUES FOR ESTIMATING TARGET SOIL CONCENTRATIONS FOR BHC ISOMERS IN SOIL CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Parameter	Unit	Value	Notes
Aquifer Hydraulic Conductivity (K)	ft/yr	18,980	Site specific value ¹
Mixing Zone Depth (d)	ft	11.3	Value estimated using Eq. 12 (USEPA, 1996)
Source Length Parallel to Ground Water (L)	ft	100	Site specific value ¹
Infiltration Rate (I)	ft/yr	0.75	Site specific value ¹
Hydraulic Gradient (i)	ft/ft	0.0056	Site specific value ¹
Aquifer Thickness (d _a)	ft	24	Site specific value ¹
Dilution Factor (DF)	unitless	17	Value estimated using Eq. 11 (USEPA, 1996)
Soil Bulk Density (pb)	kg/L	1.45	Site specific value (see Table 2)
Water Filled Porosity (Theta _w)	unitless	0.16	Site specific value (see Table 2)
Air Filled Porosity (Theta _a)	unitless	0.29	Site specific value (see Table 2)
Henry's Law Constant (H')	unitless	0	Assumed no volatilization of BHC
Partition Coefficient Lindane	. L/kg	53	Geometric mean of K _d values across all sampling locations
Partition Coefficient Alpha-BHC	L/kg	140.7	Geometric mean of K _d values across all sampling locations
Partition Coefficient Beta-BHC	L/kg	45.5	Geometric mean of K _d values across all sampling locations
Partition Coefficient Delta-BHC	L/kg	38.8	Geometric mean of K _d values across all sampling locations
Groundwater Criterion α-BHC	ug/L	0.05	Record of Decision ²
Groundwater Criterion β-BHC	ug/L	0.1	Record of Decision ²
Groundwater Criterion δ-BHC	ug/L	2.1	Groundwater Cleanup Target Level ³
Groundwater Criterion γ-BHC	ug/L	0.2	Record of Decision ²
Target Soil Leachate Concentration α-BHC	ug/L	0.85	Groundwater Criterion × DF
Target Soil Leachate Concentration β-BHC	ug/L	1.7	Groundwater Criterion × DF
Target Soil Leachate Concentration δ-BHC	ug/L	35.7	Groundwater Criterion × DF
Target Soil Leachate Concentration γ-BHC	ug/L	3.4	Groundwater Criterion × DF

Notes:

- 1. Data from TASK Environmental, Inc. and PTI Environmental Services, Inc., 1994. Remedial Investigation, Superfund Accelerated Cleanup Model, Chevron Chemical Company Site.
- 2. EPA Superfund Record of Decision: Chevron Chemical Co. (Ortho Division) EPA ID: FLD004064242, OU 01, Orlando, FL, May 22, 1996.
- 3. Groundwater and Surface Water Cleanup Target Levels, Table 1 Chapter 62-777, F.A.C. http://www.dep.state.fl.us/waste/quick_topics/rules/default.htm

TABLE 2
SITE-SPECIFIC SOIL GEOTECHNICAL DATA
CHEVRON ORLANDO SUPERFUND SITE
ORLANDO, FLORIDA

			Sieve A	Analysis ¹			Additonal Testing ¹					
Location	No. 4	No. 10	No. 40	No. 60	No. 100	No. 200	% Moisture	Permeability	Wet Density	Dry Density	Porosity	
Units			(% Pa	assing)			(%)	(ft/day)	(lbs/ft ³)	(lbs/ft ³)	(%)	
SB-112 Zone 1 @ 0850	100	100	97.5	96.6	63.9	9.6	10	12.4	95.5	87.1	53.3	
SB-112 Zone 2 @ 0852	100	100	99.3	96.9	62.2	5.4	5.2	8.6	99.3	94.2	60	
SB-112 Zone 3 @ 0856	100	100	99.5	97.7	67	17.5	28.4	2.4	112.6	95.9	43.3	
SB-111 Zone 1 @ 0930	97.4	93.1	86.6	82.9	56.1	14.1	14.3	6.3	83.1	72.8	43.3	
SB-111 Zone 2 @ 0935	100	100	99.4	96.7	64	9	9.2	4.1	116.4	107.1	56	
SB-111 Zone 3 @ 1000	100	100	99.3	96.8	57.1	9.8	25.2	3.1	111.3	101.4	46.7	
SB-110 Zone 1 @ 1030	100	99.2	97.4	94.2	63.5	15.1	17.5	2.6	74.6	69.2	50	
SB-110 Zone 2 @ 1038	100	100	99.4	96.8	63.6	9.9	7.4	3.7	112.6	102.4	45	
SB-110 Zone 3 @ 1043	100	100	99.4	96.9	58.1	11.8	33.5	15.1	103.1	92.2	56.7	

Notes:

1. See Appendix E for soil geotechnical data analysis laboratory report.

TABLE 3 PARTITION COEFFICIENT CALCULATIONS FOR α -BHC **CHEVRON ORLANDO SUPERFUND SITE** ORLANDO, FLORIDA

Station	Soll Description	Fraction of Organic Carbon (mg/kg)	Initial Soil α-BHC Conc (ug/kg)	Initial Total α-BHC Mass (ug)	SPLP Leachate α-BHC Conc. (ug/L)	SPLP Leachate α-BHC Mass (ug)	Percent Leached (%)	SPLP Sorbed α-BHC Mass (ug)	SPLP Sorbed Concentration (ug/kg)	Desorption Coefficient (Kd) (ug/ug)
78-3	dark to medium grey sand	0.0016	ND	ND	0.25	0.5	NA	NA NA	NA	
78-6	dark brown / black sand, organic	0.0065	ND	ND	0.17	0.34	NA	NA NA	NA	
78-10	tan sand	0.00067	ND	ND	ND	ND	NA	NA	NA	
79-3	medium brown sand, slightly silty	0.0032	ND	ND	ND	ND	NA	NA	NA I	
79-5	dark brown sand, very fine with few silts	0.0028	ND	ND	ND	ND	NA	NA	NA	
80-4	medium grey sand	0.0015	ND ND	ND	0.09	0.18	NA	NA	l NA	
80-6	dark brown / black sand, silts	0.0059	ND	ND	0.51	1.02	NA	NA	NA	
81-1	NA NA	0.0017	ND	ND	0.013	0.026	NA	NA	NA NA	
82-2	dark brown sand with possible fill	0.0026	ND	ND	ND	ND	· NA	NA	NA	_
83-4	dark grey sand, trace silts	0.012	2200	220	11	22	10.0%	198	1980	180.0
83-8	dark brown sand, silty	0.027	640	64	6.7	13.4	20.9%	50.6	506	75.5
83-10	dark brown sand, silty	0.0033	ND	ND	0.97	1.94	NA	NA ·	NA .	
84-3	Sand, medium grey, gravel	0.0022	ND	ND	ND	ND	NA	NA NA	NA	
84-8	Sand, dark brown, fine, organics	0.0095	45	4.5	1.1	2.2	48.9%	2.3	23	20.9
84-12	and, light grey, with trace of clay < 25%	0.003	ND	ND	0.01	0.02	NA	NA	NA NA	- '
85-3	Sand, gold, backfill	0.0015	ND	ND	0.27	0.54	NA	NA	NA	
86-2	Sand, dark gray brown, fine; 25% silt	0.0015	80	8 .	,0.35	0.7	8.8%	7.3	73	208.6
87-2	Sand, brown, fine; some tan	0.0013	94	9.4	0.099	0.198	2.1%	9.202	92.02	929.5
87-6	Sand, dark brown, organic	0.00039	ND	· ND	0.034	0.068	NA	NA NA	NA	
87-14	Sand, light gray, few silts	0.00015	ND	ND	ND	ND	NA	NA	NA	
									Minimum	20.9
	Soil Sample Mass (grams):	100			•				Maximum	929.5
	Solute Sample Mass (grams):	2000							Geomean	140.7
	Soil Mass to Solute Mass Ratio	1:20							Average	282.9

Notes:

ug - micrograms kg - kilograms L - liters

TABLE 4 PARTITION COEFFICIENT CALCULATIONS FOR β-BHC CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Station	Soil Description	Fraction of Organic Carbon (mg/kg)	Initial Soil β-BHC Conc (ug/kg)	Initial Total β-BHC Mass (ug)	SPLP Leachate β-BHC Conc. (ug/L)	SPLP Leachate β-BHC Mass (ug)	Percent Leached (%)	SPLP Sorbed β-BHC Mass (ug)	SPLP Sorbed Concentration (ug/kg)	Desorption Coefficient (Kd) (ug/ug)
78-3	dark to medium grey sand	0.0016	ND ·	ND	ND	. ND	NA	NA	NA I	
78-6	dark brown / black sand, organic	0.0065	ND	ND	ND	ND	NA	NA	NA I	_
78-10	tan sand	0.00067	ND	ND	ND	ND	NA -	NA	NA	
79-3	medium brown sand, slightly silty	0.0032	ND	ND	ND	ND	NA	NA	NA	
79-5	dark brown sand, very fine with few silts	0.0028	ND	ND	. ND	ND	NA	NA	NA	-
80-4	medium grey sand	0.0015	ND	ND	· ND	ND	NA	NA	NA ·	
80-6	dark brown / black sand, silts	0.0059	200	[,] 20	2.3	4.6	23.0%	15.4	154	67.0
81-1	NA NA	0.0017	ND	ND	0.58	1.16	NA	NA NA	NA	_
82-2	dark brown sand with possible fill	0.0026	1100	110	4.4	8.8	8.0%	101.2	1012	230.0
83-4	dark grey sand, trace silts	0.012	ND	ND	2.1	4.2	NA	NA NA	NA .	
83-8	dark brown sand, silty	0.027	ND	ND	1.7	3.4	NA	NA	NA	-
83-10	dark brown sand, silty	0.0033	ND	ND	0.32	0.64	NA	NA	NA	 .
84-3	Sand, medium grey, gravel	0.0022	ND	ND	ND	ND	NA	NA	NA	
84-8	Sand, dark brown, fine, organics	0.0095	ND	ND	1.2	2.4	NA	NA	NA NA	
84-12	Sand, light grey, with trace of clay < 25%	0.003	ND	ND	0.3	0.6	NA	NA	NA	
85-3	Sand, gold, backfill	0.0015	66	6.6	2.4	4.8	72.7%	1.8	18	7.5
86-2	Sand, dark gray brown, fine; 25% silt	0.0015	1800	180	22	44	24.4%	136	1360	61.8
87-2	Sand, brown, fine; some tan	0.0013	660	66	4	8	12.1%	58	580	145.0
87-6	Sand, dark brown, organic	0.00039	120	12	4.2	8.4	70.0%	3.6	36	8.6
87-14	Sand, light gray, few silts	0.00015	5.6	0.56	0.28	0.56	100.0%	-1.11E-16	-1.11022E-15	0.0
		1		-					Minimum	0.0
-	Soil Sample Mass (grams):	100							Maximum	230.0
	Solute Sample Mass (grams):	2000							Geomean	45.5
	Onli Mana ta Onlista Mana Datia	4.00							Avorono	74 2

Soil Mass to Solute Mass Ratio 1:20 Average 74.3

Notes:

ug - micrograms kg - kilograms L - liters

TABLE 5 PARTITION COEFFICIENT CALCULATIONS FOR δ-BHC CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

		Fraction of	Initial	Initial	SPLP	SPLP	<u></u>	SPLP	SPLP		
!	1	Organic	Soil	Total	Leachate	Leachate	Percent	Sorbed	Sorbed	Desorption	
		Carbon	δ-BHC Conc	δ -ΒΗC	δ-BHC Conc.	δ-BHC Mass	Leached	δ-BHC	Concentration	Coefficient	
Station	Soil Description	(mg/kg)	(ug/kg)	Mass (ug)	(ug/L)	(ug)	(%)	Mass (ug)	(ug/kg)	(Kd) (ug/ug)	
78-3	dark to medium grey sand	0.0016	ND	ND	0.39	0.78	NA	NA	NA		
78-6	dark brown / black sand, organic	0.0065	ND	ND	2.3	4.6	NA	NA	NA		
78-10	tan sand	0.00067	ND	ND	ND	ND	NA	NA	NA		
79-3	medium brown sand, slightly silty	0.0032	ND	ND	0.12	0.24	NA	NA	NA I		
79-5	dark brown sand, very fine with few silts	0.0028	I ND	ND	ND ND	ND	NA	NA NA) NA J		
80-4	medium grey sand	0.0015	ND	ND	0.25	0.5	NA	NA	NA		
80-6	dark brown / black sand, silts	0.0059	ND	ND	0.3	0.6	NA	NA	NA		
81-1	l NA	0.0017	ND	ND	ND	ND	NA	NA	NA		
82-2	dark brown sand with possible fill	0.0026	ND	ND	ND	ND	NA	NA	NA		
83-4	dark grey sand, trace silts	0.012	l ND I	ND	2.5	5	NA	NA	NA I		
83-8	dark brown sand, silty	0.027	480	48	ND	ND	NA	NA NA	NA .		
83-10	dark brown sand, silty	0.0033	51	5.1	2.4	4.8	94.1%	0.3	3	1.3	
84-3	Sand, medium grey, gravel	0.0022	ND	ND	1.6	3.2	NA	NA	NA	-	
84-8	Sand, dark brown, fine, organics	0.0095	ND	ND	6.5	13	NA	NA	NA		
84-12	Sand, light grey, with trace of clay < 25%	0.003	ND	ND	ND	ND	NA	NA	NA	_	
85-3	Sand, gold, backfill	0.0015	ND	ND	ND	ND	NA	NA	NA	_	
86-2	Sand, dark gray brown, fine; 25% silt	0.0015	58	5.8	0.57	1.14	19.7%	4.66	46.6	81.8	
87-2	Sand, brown, fine; some tan	0.0013	110	11	0.23	0.46	4.2%	10.54	105.4	458.3	
87-6	Sand, dark brown, organic	0.00039	56	5.6	0.82	1.64	29.3%	3.96	39.6	48.3	
87-14	Sand, light gray, few silts	0.00015	ND	ND	0.015	0.03	NA ·	NA	NA		
	<u> </u>								Minimum	1.3	
	Soil Sample Mass (grams):	100					-		Maximum	458.3	
	Solute Sample Mass (grams):	2000		•					Geomean	38.8	
	Soil Mass to Solute Mass Ratio	1:20					•		Average	147.4	

Notes:

ug - micrograms kg - kilograms L - liters

TABLE 6 PARTITION COEFFICIENT CALCULATIONS FOR y-BHC CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Station	Soli Description	Fraction of Organic Carbon (mg/kg)	Initial Soil γ-BHC Conc (ug/kg)	Initial Total γ-BHC Mass (ug)	SPLP Leachate γ-BHC Conc. (ug/L)	SPLP Leachate γ-BHC Mass (ug)	Percent Leached (%)	SPLP Sorbed γ-BHC Mass (ug)	SPLP Sorbed Concentration (ug/kg)	Desorption Coefficient (Kd) (ug/ug)
78-3	dark to medium grey sand	0.0016	ND	ND	ND	ND	NA	NA	NA NA	-
78-6	dark brown / black sand, organic	0.0065	ND	ND	ND	ND	NA	NA	NA NA	
78-10	tan sand	0.00067	ND	ND	ND	ND	NA	NA NA	NA	
79-3	medium brown sand, slightly silty	0.0032	ND	ND	ND	ND	NA	NA NA	NA I	
79-5	dark brown sand, very fine with few silts	0.0028	ND	ND	ND	ND	NA	NA	l NA	
80-4	medium grey sand	0.0015	ND	ND	ND	ND	NA	'NA	NA	
80-6	dark brown / black sand, silts	0.0059	ND	ND	ND ND	ND .	NA	l NA	NA .	
81-1	NA I	0.0017	ND	ND	ND	ND	NA	NA	NA NA	-
82-2	dark brown sand with possible fill	0.0026	ND	ND	ND	ND	NA	NA ·	l NA	
83-4	dark grey sand, trace silts	0.012	ND	ND	l ND	ND	. NA	NA NA	NA	
83-8	dark brown sand, silty	0.027	270	27 .	3.7	7.4	27.4%	19.6	196	53.0
83-10	dark brown sand, silty	0.0033	ND	ND	0.2	0.4	NA	NA NA	NA	••
84-3	Sand, medium grey, gravel	0.0022	ND	ND	ND	ND	NA	NA NA	NA NA	
84-8	Sand, dark brown, fine, organics	0.0095	ND	ND	ND	ND	NA	NA	NA	~=
84-12	Sand, light grey, with trace of clay < 25%	0.003	ND	ND	ND	ND	NA	NA	NA NA	-
85-3	Sand, gold, backfill	0.0015	ND	ND	ND	ND	NA	NA	NA NA	
86-2	Sand, dark gray brown, fine; 25% silt	0.0015	ND	ND	0.26	0.52	NA	NA	NA	••
87-2	Sand, brown, fine; some tan	0.0013	140	14	ND	ND	NA	NA	NA	
87-6	Sand, dark brown, organic	0.00039	ND	ND	ND	ND	NA	NA NA	NA	
87-14	Sand, light gray, few silts	0.00015	ND .	ND	ND	- ND	NA	NA	NA	
	- 								Minimum	53.0
	Soil Sample Mass (grams):	100			•				Maximum	53.0
	Solute Sample Mass (grams):	2000							Geomean	53.0
	Soil Mass to Solute Mass Ratio	1:20							Average	53.0

Notes:

ug - micrograms kg - kilograms L - liters

TABLE 7 POLYGONS REMOVAL VIA EXCAVATION CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

0-2 ft bgs Soil Depth Interval

		0-2 ft bgs	Soil Depth Inter	val			
Polygons Planned for Removal	α-BHC Mass in Polygon (kg)	β-BHC Mass in Polygon (kg)	S-BHC Mass in Polygon (kg)	γ-BHC Mass in Polygon (kg)	Toxaphene Mass in Polygon (kg)	Chlordane Mass in Polygon (kg)	Polygon Volume (cubic yards)
SB-105	0.002	0.080	0.006	0.017	0.050	0.523	34.3
SB-107	0.000	0.014	0.000	0.000	0.152	0.253	22.7
SB-108	0.107	0.258	0.002	0.001	0.226	1.163	29.0
SB-12	0.000	0.000	0.000	0.000	0.001	0.003	4.7
SB-132	0.007	0.033	0.009	0.004	1.144	0.114	39.5
SB-133	0.023	0.014	0.017	0.005	1.727	13.812	25.8
SB-134	0.003	0.103	0.008	0.004	1.054	0.267	12.0
SB-135	0.066	0.041	0.052	0.014	5.171	4.359	66.3
SB-137	-	0.016	-	0.006	2.072	210.610	31.0
SB-150	0.001 0.070	0.000	0.001	0.000	0.059 34.192	0.090	10.1 11.4
SB-151 SB-152	0.070	0.190 0.110	0.002	0.001 0.001	0.131	2.590	23.5
SB-153	0.004	0.110	0.003	0.001	0.131	1.466	13.2
SB-153 SB-154	0.145	0.060	0.035	0.001	0.205	1.400	23.9
SB-16	0.000	0.000	0.000	0.000	0.011	0.005	23.9
SB-18	0.000	0.000	0.000	0.000	0.334	0.005	5.3
SB-186	0.001	0.002	0.002	0.001	-	0.019	9.8
SB-187	0,000	0.000	0.002	0.000	0.100	0.025	8.2
SB-188	- 0.000	0.000	-	- 0.000	0.003	0.001	10.5
SB-189		0.000		0.000	0.003	0.000	11.4
SB-191	0.000	0.078	0.001	0.000	0.003	0.001	9,1
SB-192	0.000	0.002	0.001	0.001	0.280	0.052	8.1
SB-193	0.000	0.002	0.000	0.001	0.028	0.002	9.4
SB-197	0,000	0.000	0.000	0.000	0.036	0.034	12.8
SB-199		0.000	0.000	_	0.004	0.000	12.1
SB-203	0.000	0.009	0.000	0.000	-		11.5
SB-204	-0.000	0.006	0.000	0.000	0.009	<u>-</u>	3.3
SB-205	0.000	0.004	0.000	0.000	0.005	_	1.8
SB-212		0.000	-		0.042	0.008	22.1
SB-213	0.000	0.007	_	0.000	-	0.011	25.8
SB-214	0.000	0.029	0.000	0.000			21.5
SB-215	0.000	0.020	0.000	0.000	0.005	0.000	20.2
SB-218	0.017	1.085	0.004	0.035	56.012	3.015	31.4
SB-218	0.002	0.025		0.020	0.176	0.260	63.0
SB-219	0.001	0.029	0.004	0.000	0.008	0.004	21.6
SB-28	0.000	0.000	_	-	_	0.008	76.1
SB-29	-	-	-		-		60.0
SB-31	-		-		_		60.8
SB-33	0.001	0.002	0.002	0.002	0.008	0.013	29.2
SB-34	1.275	0.005	0.312	0.364	9.885	1.795	23.3
SB-35	0.550	0.433	0.002	0.001	0.217	46.644	15.0
SB-43		-		_			47.8
SB-44		-					50.5
SB-45	<u> </u>	<u> </u>		_			38.9
SB-47	0.001		0.001	-		0.59	66.5
SB-81	0.000	0.000	0.000	0.000	0.003		9.1
SB-82	0.001	0.027	0.001	0.000	0.065	0.442	22.3
SB-83	- 0.001	0.044		- 0.000	- 0.010	0.007	38.2
SB-86 SB-87	0.001 0.001	0.014 0.005	0.000	0.000 0.001	0.010 0.011	0.007	7.1
SB-89	0.001					1 695	7.5 15.8
SB-95	0.001	0.008	0.001 0.000	0.000	7.023 0.023	1.685 0.245	15.0
SB-96	0.001	0.000	0.000	0.000	0.023	0.245	43.6
SB-97	8.216	1.449	2.539	4.185	85.147	0.013	13.4
SB-98	0.121	0.020	0.024	0.007	2.628	18.574	36.3
Target Soil Concentration (mg/kg)		0.020	1.386	0.180	NA	50	
Final AWA Concentration (mg/kg)		0.077	0.028	0.009	2.5	1.4	Total Volume
Total Mass (kg)		4.48	3.12	4.71	223.6	319.5	(cubic yards)
Total Mass Removed (kg)		4.28	3.03	4.67	208.3	307.4	
% Total Mass Removed (kg		95.6%	97.3%	99.2%	93.2%	96.2%	1364
/o i Utal Islass NelliOvec	39.370	23.070	31.370	33.270	JJ.Z /6	35.276	L

TABLE 7 POLYGONS REMOVAL VIA EXCAVATION CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

2-5 ft bgs Soil Depth Interval

		2-5 ft bgs	Soil Depth Inter	val'			
Polygons Planned for Removal	α-BHC Mass in Polygon (kg)	β-BHC Mass in Polygon (kg)	δ-BHC Mass in Polygon (kg)	γ-BHC Mass in Polygon (kg)	Toxaphene Mass in Polygon (kg)	Chlordane Mass in Polygon (kg)	Polygon Volume (cubic yards)
SB-105	0.000	0.001	0.000	0.000	0.016	0.003	50.1
SB-107	0.001	0.000	0.000	0.000	7.190	3.860	34.1
SB-12	0.001	0.003	0.001	0.000	0.119	0.007	7.6
SB-137	0.001	0.000		0.000	_	28.406	46.5
SB-150	0.540	0.168	0.120	0.228	0.168	0.841	10.8
SB-151	0.027	0.029	0.012	0.012	2.732	0.262	16.4
SB-152	0.006	0.026	0.005	0.001	3.053	0.599	35.2
SB-153	0.048	0.054	0.030	0.008	0.151	0.009	27.1
SB-154	0.265	0.371	0.318	0.001	-	9.016	23.9
SB-16		-	_	_		-	6.6
SB-186	0.007	0.003	0.004	0.008		0.022	14.4
SB-187	0.000	0.004	0.000	0.001		0.102	12.2
SB-188	0.002	0.000	0.005	0.038		0.084	15.7
SB-189	0.032	0.000	0.000	0.057	0.048	0.162	17.1
SB-191	0.000	0.018	0.000	0.000	0.005	_	14.6
SB-192	0.000	0.003	0.000	0.000	0.049	0.009	12.2
SB-193	0.000	0.001	0.000	0.000	0.004	_	14.2
SB-197	0.001	0.001	0.003	0.000		0.010	19.2
SB-199	0.001	0.000	0.003	0.000	0.006	0.007	18.2
SB-203	0.000	0.002	0.001	0.000	0.005		17.3
SB-204	0.000	0.023	0.000	0.000	0.006	0.001	18.9
SB-205	0.015	0.039	0.009	0.018	0.011	_	18.7
SB-212	0.000	0.000	0.088	0.000	3,473	0.017	24.0
SB-213	0.000	0.008	0.000	0.000	0.011	0.023	38.7
SB-214	_	0.006	0.001	0.000	0.009	_	32.6
SB-215		0.003	0.000	0.000	0.009	0.006	31.4
SB-216	0.000	0.035	0.002	0.001	0.068	0.007	47.1
SB-218	0.000	0.013	0.001	0.001	0.031	0.012	94.3
SB-219	0.000	0.002	0.000	0.000	0.010		34.9
SB-28	0.009	0.020	0.001	0.000		0.174	76.1
SB-29	0.001	0.001	0.001	0.107		0.920	60.0
SB-31	0.024	0.001	0.001	0.088		1.034	60.8
SB-33	0.001	0,001	0.036	0.054	_	0.249	43.9
SB-43		0.001	_	0.041	0.069	0.807	47.8
SB-44			0.001	0.129		0.735	50.5
SB-45			0.001	0.052		0.679	38.9
SB-47		_	0.056	0.148		0.577	66.5
SB-83	0.088	0.002	0.002	0.001		1.045	36.2
SB-95	0.333	0.140	0.086	0.000		1.613	9.7
SB-97	0.081	0.001	0.027	0.117	2.246		20.2
SB-98	0.055	0.055	0.033	0.001	-	1.312	49.2
Target Soil Concentration (mg/kg)		0.077	1,386	0.180	NA NA	100	
Final AWA Concentration (mg/kg)		0.024	0.036	0.058	0.94	2.1	Total Volume
							(cubic yards)
Total Mass (kg)		1.25	1.03	1.54	23.7	70.6	
Total Mass Removed (kg)		1.03	0.85	1.11	19.5	52.6	1314
% Total Mass Removed	93.4%	83.1%	82.2%	72.2%	82.4%	74.5%	

TABLE 7 POLYGONS REMOVAL VIA EXCAVATION CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

5-7 ft bgs Soil Depth Interval

		5-7 ft t	gs Soil Interval	·			
-	α-BHC Mass in Polygon (kg)	β-BHC Mass in Polygon (kg)	δ-BHC Mass in Polygon (kg)	γ-BHC Mass in Polygon (kg)	Toxaphene Mass in Polygon (kg)	Chlordane Mass in Polygon (kg)	Polygon Volume (cubic yards)
SB-105	0.004	0.008	0.010	0.004		0.02	33.4
SB-12	0.000	0.001	0.000	0.000	0.001		4.7
SB-150	0.021	0.011	0.009	0.258	0.064	0.06	11.0
SB-151	0.028	0.032	0.009	0.010	0.032	0.27	11.5
SB-154	0.001	0.005	0.002	0.000	0.088	0.14	16.3
SB-16	0.000	0.001	0.000	0.000	0.015	_	6.6
SB-186	0.005	0.008	0.021	0.008	_	0.02	9.6
SB-187	0.000	0.000	0.021	0.010		0.03	8.2
SB-188	0.001	0.000	0.002	0.011		0.03	10.5
SB-189	0.000	0.000	0.019	0.024	_	0.07	11.4
SB-197	0.003	0.005	0.006	0.000		0.02	15.2
SB-199	0.005	0.003	0.008	0.000	0.040	0.04	12.3
SB-204	-	0.001	0.000	0.000	0.019	_	8.5
SB-205	0.000	0.001	0.000	0.001	0.001	_	1.8
SB-212	0.001	0.000	0.090	0.000	5.015	_	16.0
SB-214	_	0.006	0.000	0.000	0.007	_	21.7
SB-215	_	0.004	0.000	0.001	0.007	0.00	20.9
SB-216	0.003	0.035	0.018	0.003	0.147	0.01	31.4
SB-218	0.001	0.014	0.003	0.003	0.020		61.7
SB-219	0.000	0.004	0.001	0.000	0.007	_	21.6
SB-28	0.001	0.001	0.001	0.019	-	0.16	50.8
SB-29	0.004	0.000	0.001	0.050	_	0.53	40.8
SB-83	0.023	0.000	0.017	0.010		0.14	32.6
SB-97	0.003	0.000	0.000	0.002	0.412		16.0
Target Soil Concentration (mg/kg)	0.120	0.077	1.386	0.180	NA	100	Total Volume
Final AWA Concentration (mg/kg)	0.011	0.013	0.015	0.021	1.12	0.71	(cubic yards)
Total Mass (kg)	0.15	0.25	0.34	0.55	9.30	5.33	,=20,0 ,2.00,
Total Mass Removed (kg)		0.14	0.24	0.42	5.87	1.92	475
% Total Mass Removed	73.2%	57.4%	70.5%	76.3%	63.2%	36.0%	l 7,5

Summary - 0-7 ft bgs Soil Depth Interval

		0-10 ft bgs Soi	I Interval ^{1,2}				1
	α-BHC	β -ВНС	δ-ВНС	γ-ВНС	Toxaphene	Chlordane	Total Volume (cubic yards)
Total Mass (kg)	12.49	5.97	4.49	6.80	256.58	395.45	1 (00.0.0) 0.00,
Total Mass Removed (kg)	12.29	5.48	4.12	6.20	233.68	361.88	3153
% Total Mass Removed	98.3%	91.4%	91.8%	91.2%	91.1%	91.5%] 3133

Notes:

Does not include isolated non-detect (ND) polygons. Isolated ND ploygons are defined as any ND polygon that did not have contact with a polygon that contained a detected concentration of any BHC isomer.

-- not included in calculation of constituent mass and area-weighted average concentration

ft bgs - feet below ground surface BHC - hexachlorocyclohexane

kg - kilogram

mg - milligrams

NA - not applicable

TABLE 8 SUMMARY OF SOIL ANALYTICAL RESULTS DELINEATING THE HAZARDOUS SOIL AREA CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

[]	Depth	Date	Dieldrin	p,p'-DDD	p,p'-DDE	p,p'-DDT	Toxaphene	a-BHC	b-BHC	d-BHC	Lindane	Total BHCs	a-Chlordane	g-Chlordane	Total Chlordane
Location ID:		Collected		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
SB-137	1	01/08/09	0.85 K	19 K	0.9 K	0.34 K	120 K	1.6 K	0.95 K	1.2 K	0.32 K	ND ND	3,200	2,900	6,100
SB-137 SB-137	<u>3</u>	01/08/09	0.017 K 0.0017 U	0.96 K	0.018 K 0.0018 U	0.0068 K 0.00069 U	2.4 K 0.25 U	0.031 K 0.0031 U	0.019 K 0.0019 U	0.023 K 0.0024 U	0.0064 K 0.00065 U	ND ND	340 0.72	210 0.61	550 1.33
36-137	<u>5</u>	01/06/09	0.0017 0	0.0019 U	0.00160	0.00069 0	0.25 0	0.00310	0.0019 0	0.0024 0	0.00065 0	ND	0.72	0.01	1.33
SB-137-A	0 - 2	05/04/10	0.18 U	250	0.19 U	320	3,100	14	0.2 U	3.8	35	52.8	0.25 U	0.19 U	ND
SB-137-A	2 - 3	05/04/10	0.18 U	31	0.19 U	28	240	1.9	2.4	0.81 i	4.7	9.81	0.25 U	0.19 U	ND
SB-137-B	0-2	05/04/10	0.017 U	2.3	0.018 U	0.007 U	17	0.032 U	0.02 U	0.024 U	0.0065 U	ND	6.3	7.5	13.8
SB-137-B	2 - 3	05/04/10	1.9	0.02 U	0.019 U	4.4	23	0.033 U	0.02 U	0.025 U	0.0067 U	ND	8.6	7.8	16.4
SB-137-C	0 - 2	05/04/10	2.5	0.02 U	0.019 U	1.1	20	0.032 U	0.02 U	0.024 U	0.0066 U	ND	12	11	23
SB-137-C	2 - 3	05/04/10	0.32	0.02 U	0.17	0.0071 U	4.91	0.032 U	0.33	0.024 U	0.0067 U	0.33	1.4	1.3	2.7
SB-137-D	0 - 2	05/04/10	0.073	0.0019 U	0.057	0.31	0.24 U	0.0031 U	0.0019 U	0.0023 U	0.00064 U	ND	0.5	0.25	0.75
SB-137-D	2 - 3	05/04/10	0.8	0.02 U	0.24_	0.0071 U	4.21	0.032 U	0.21	0.024 U	0.0067 U	0.21	1.9	1.6	3.5
SB-137-E	0-2	05/04/10	0.47	0.02 U	0.34	0.33	3.7	0.032 U	0.02 U	0.024 U	0.0065 U	ND -	2.2	1.5	3.7
SB-137-E	2-3	05/04/10	0.019	0.002 U	0.0096	0.00071 U	0.26 U	0.0032 U	0.002 U	0.0024 U	0.00067 U	ND	0.068	0.036	0.104
SB-137-F	0-2	05/04/10	0.017 U	0.02 U	0.54 1	0.007 U	10	0.032 U	0.26	0.024 U	0.0065 U	0.26	2	2	4
SB-137-F	2-3	05/04/10	0.0017 U	0.002 U	0.0018 U	0.0007 U	1.2	0.0032 U	0.047	0.0024 U	0.00065 U	0.047	0.1	0.06	0.16
SB-137-G	0 - 2	05/04/10	0.049 [0.013]	0.01 U [0.01 U]	0.16 [0.19]	0.11 [0.18]	1.3 U [1.2 U]	0.016 U [0.016 U]	0.01 U [0.01 U]	0.012 U [0.012 U]	0.0034 U [0.0032 U]	ND [ND]	0.21 [0.32]	0.12 [0.21]	0.33 [0.53]
SB-137-G	2-3		0.0019 U [0.0018 U]		0.15 [0.16]	0.083 [0.069]		0.0035 U [0.0032 U]	0.068 [0.075]	0.0027 U [0.0024 U]	0.026 [0.029]	0.094 [0.104]	0.073 [0.078]	0.045 [0.048]	0.118 [0.126]
SB-137-H	0.83 - 2.5	06/02/10	0.021 U	0.024 U	0.022 U	0.0084 U	0.97 U	0.038 U	0.024 U	0.029 U	0.0079 U	ND	51	38	89
00 407 1	000 05	00/00/40	0.040.11	0.0011	0.040.11	0.70.11				0511	47		0.00011	0.040.11	- ND
SB-137-I	0.83 - 2.5	06/02/10	0.018 U	0.02 U	0.019 U	0.73 U	2,500	8.91	21	2.5 U	17	27.9	. 0.026 U	0.019 U	ND
SB-137-J	0.83 - 2.5	06/02/10	0.021 U	0.023 U	0.022 U	0.0083 U	660	0.17	0.52	0.029 U	0.45	1.14	0.03 U	0.022 U	ND
								-	-						
SB-137-K	0.83 - 2.5	06/02/10	0.49	0.02 U	0.019 U	0.0073 U	2.6 U	0.033 U	0.02 U	0.025 U	0.0068 U	ND	0.7	0.59	1.29
00 407 1	000 05	00/00/40		2 222 11	0.0001	0.000111				0.00011	0.0070.11			4.0	
SB-137-L	0.83 - 2.5	06/02/10	22	0.023 U	0.022 U	0.0081 U	2.9 U	0.037 U	1.1	0.028 U	0.0076 U	1.1	1.5	1.9	3.4
SB-137-M	0.83 - 2.5	06/02/10	1	0.021 U	0.02 U	0.0076 U	27	0.035 U	0.26	0.026 U	0.0071 U	0.26	- 3.5	1.9	5.4
SB-137-N	0.83 - 2.5	06/02/10	9.2	· 0.02 U	0.019 U	0.0071 U	34	0.032 U	0.52	0.024 U	0.061	0.581	6.2	2.8	9
00 407 0	000 05	00/00/40		0.004 1170 000 117	0.001150.00415	0.0070.1150.0070.11	45.44	0.0054170.00547	0.004 11 (0.000 11)	0.0001150.00710	0.0074 1170 0070 111	ND DID	0.4 703		40.4 (40.0)
SB-137-O	0.83 - 2.5	06/02/10	6.2 [7.3]	0.021 U [0.022 U]	0.02 U [0.021 U]	0.0076 U [0.0078 U]	42 [44]	0.035 U [0.035 U]	0.021 U [0.022 U]	0.026 U [0.027 U]	0.0071 U [0.0073 U]	ND [ND]	6.1 [9]	6.3 [7.2]	12.4 [16.2]
SB-137-P	0.83 - 2.5	06/02/10	0.48	0.02 U	0.019 U	0.0071 U	11	0.032 U	0.02 U	0.024 U	0.0067 U	ND	5.2	3.7	8.9
		1				5.001.10	 	V.552 0	<u> </u>				<u> </u>		† · · · · · · · · · · · · · · · · · · ·
SB-137-Q	0.83 - 2.5	06/02/10	0.02 U	0.022 U	0.021 U	0.0079 U	1,400	0.036 U	0.022 U	0.027 U	0.0074 U	ND	0.028 U	0.021 U	ND
															I
SB-137-R	U.83 - 2.5	07/27/10	0.44	0.023 U	0.022 U	0.0083 U	6.0	0.038 U	0.023 U	0.029 U	0.024	0.024	2.8	2.8	5.6
SB-137-S	0.83 - 2.5	07/27/10	1.2	0.002 U	0.0019 U	0.00072 U	18	0.0033 U	3.0	0.0025 U	0.073	3.073	3.2	2.7	5.9
35 101 -0	J.00 - 2.0	3.727710	1.2	0.002.0	0.00190	0.00012.0	10	0.0000	5.0	0.0023 0	0.010	0.07.0			
<u> </u>		<u></u>		L	L	L	<u> </u>			<u> </u>	<u> </u>		<u></u>	<u> </u>	

LEGEND

i = Reported value is between the laboratory method detection limit and laboratory practical quantitation limit.

K = Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

ND = Not detected

U = Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

NOTES:

(1) Detected concentrations are in bold font.

(2) Duplicate samples are indicated by [concentration].

TABLE 9 SUMMARY OF TCLP ANALYTICAL RESULTS CHEVRON ORLANDO SUPERFUND SITE

CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Location ID:	Depth (Feet)	Date Collected	Chlordane mg/L	Endrin mg/L	Heptachlor mg/L	Heptachlor Epoxide mg/L	Lindane mg/L	Methoxychlor mg/L	Toxaphene mg/L
20115.1		24/22/22			0.0001011		0.0004014		0.00011
COMP-1	1-2	04/08/10	0.11	0.00009 U	0.00012 U	0.00011 U	0.00012 U	0.00009 U	0.002 U
SB-137-A	0 - 2	05/04/10	0.0001 U	0.00009 U	0.00012 U	0.00011 U	0.39	0.00009 U	0.002 U
SB-137-A	2 - 3	05/04/10	0.0001 U	0.00009 U	0.00012 U	0.00011 U	0.078 I	0.00009 U	0.18
SB-137-C	0 - 2	05/04/10	0.0001 U	0.00009 U	0.00012 U	0.00011 U	0.00059 I	0.00009 U	0.028 I
SB-137-I	0.83 - 2.5	06/02/10	0.001 U	0.0009 U	0.0012 U	0.0011 U	0.091 I	0.0009 U	0.13
SB-137-L	0.83 - 2.5	06/02/10	0.0001 U	0.00009 U	0.00012 U	0.00011 U	0.00012 U	0.00009 U	0.002 U

LEGEND

U

= Indicates the constituent was not detected at the PQL. The value preceding the U indicates the PQL.

= Reported value is between the laboratory method detection limit and laboratory practical quantitation limit.

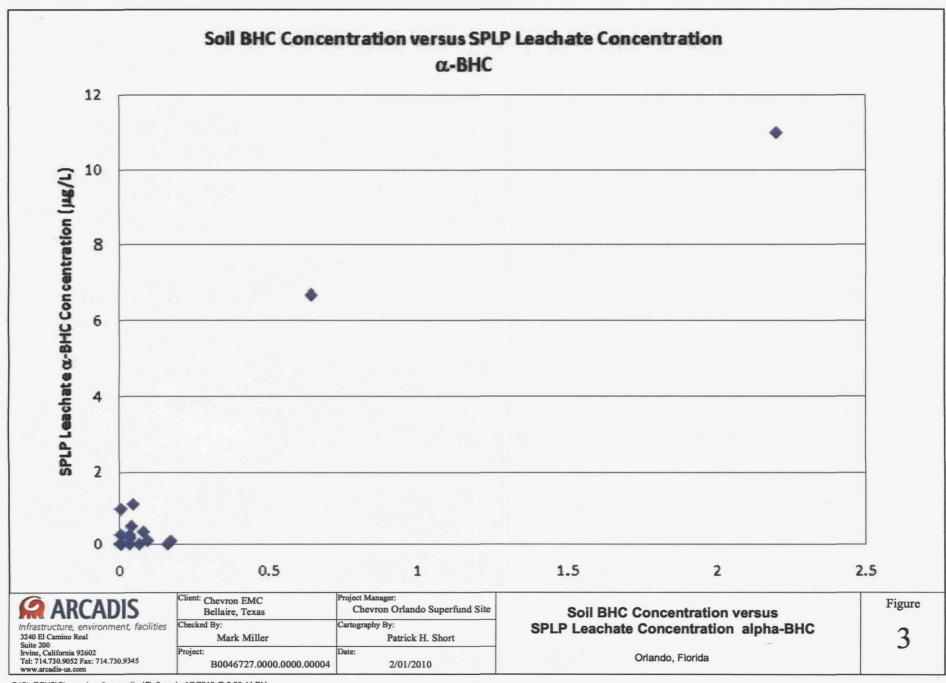
NOTES:

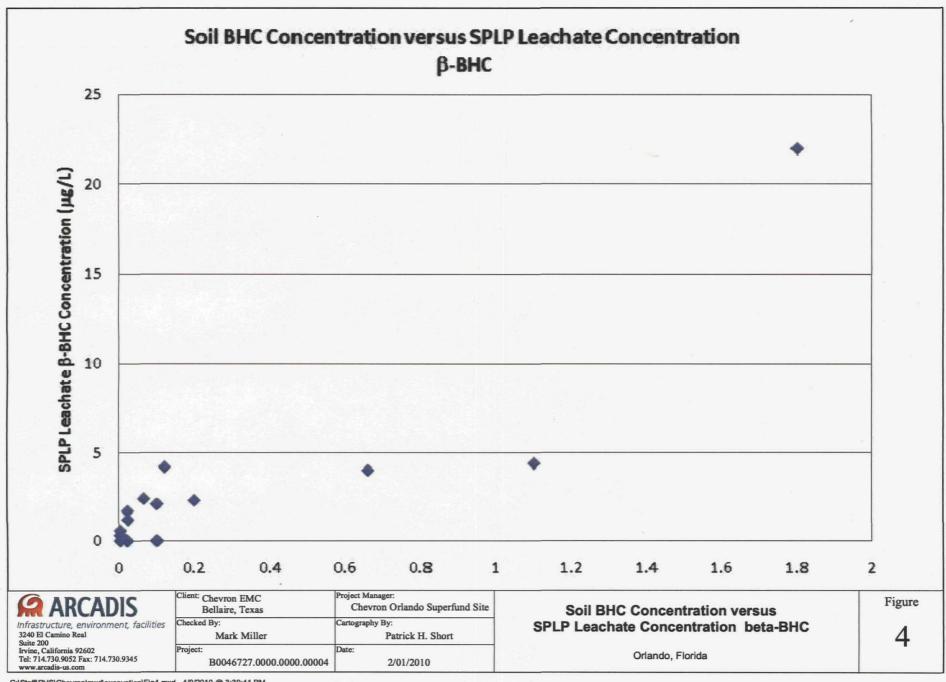
(1) Detected concentrations are in bold font.

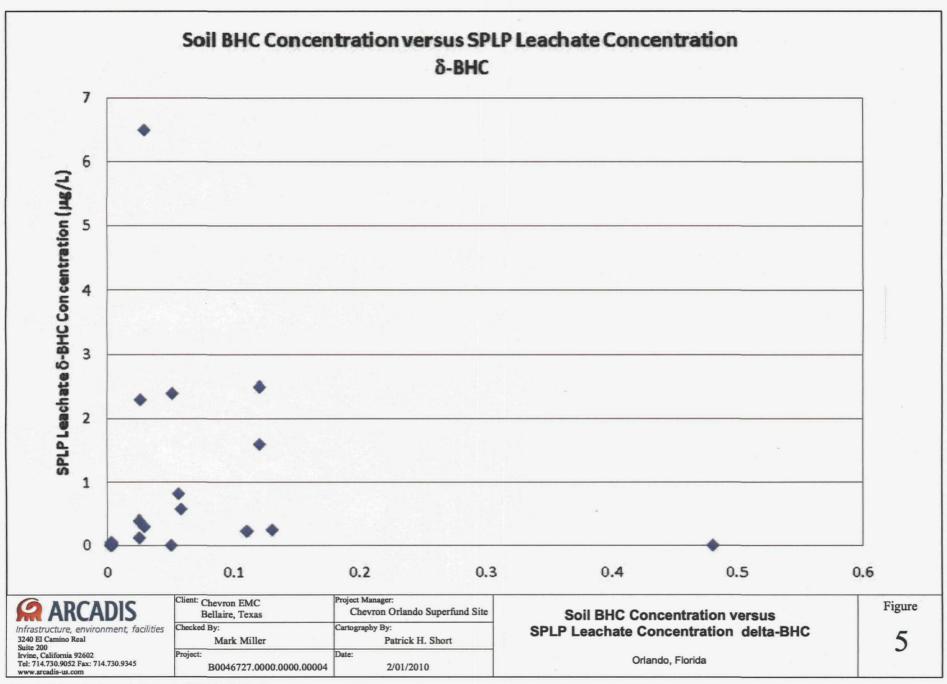
Figures

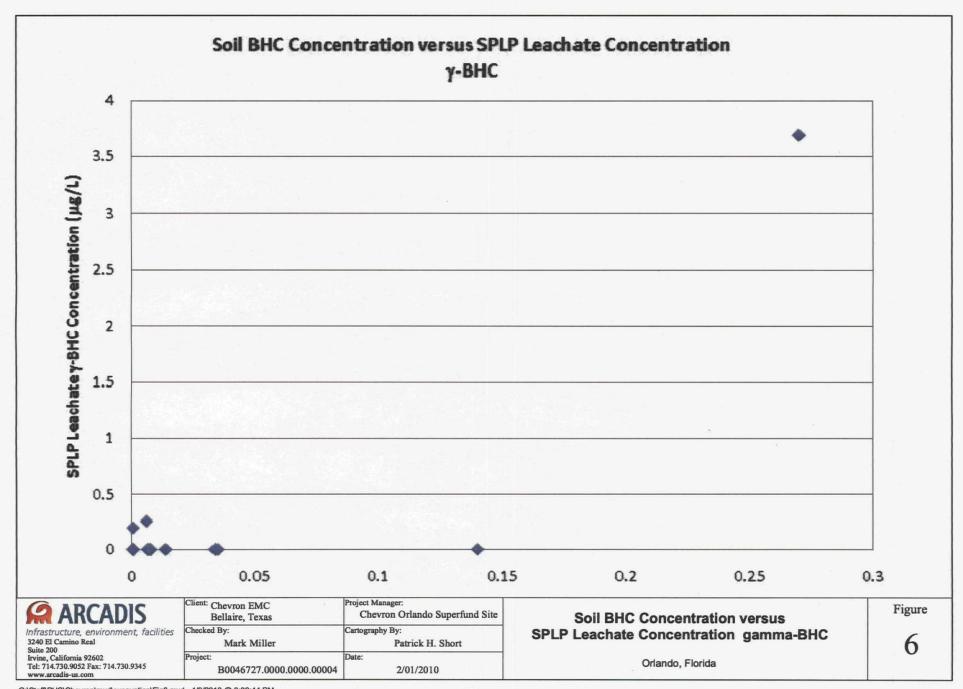
BY: SARTORI, KATHERINE

PLOTTED: 1/14/2008 10:30 AM

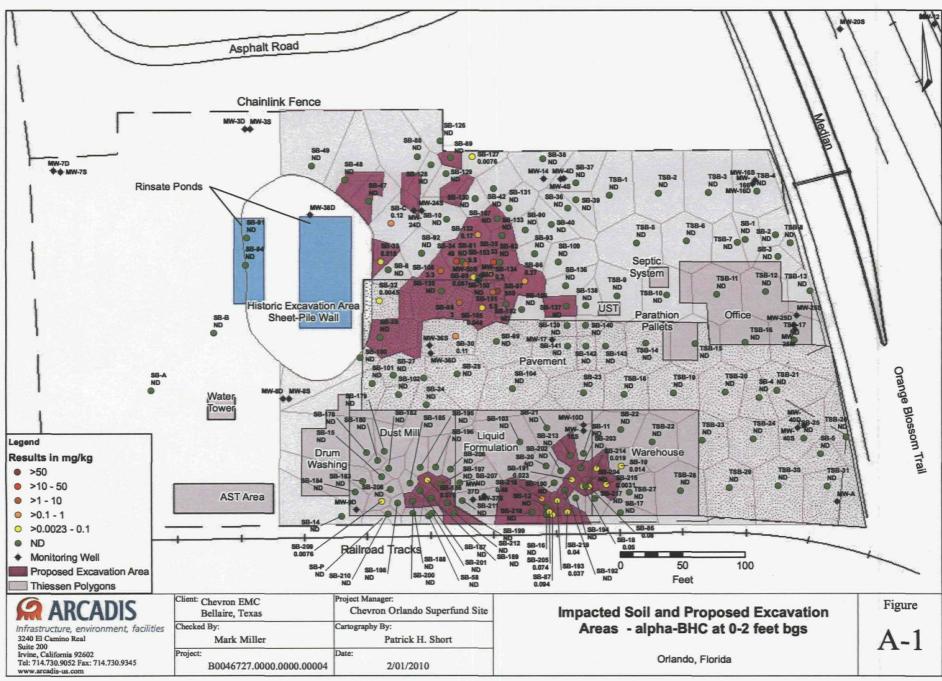

PLOTSTYLETABLE: PLTFULL.CTB

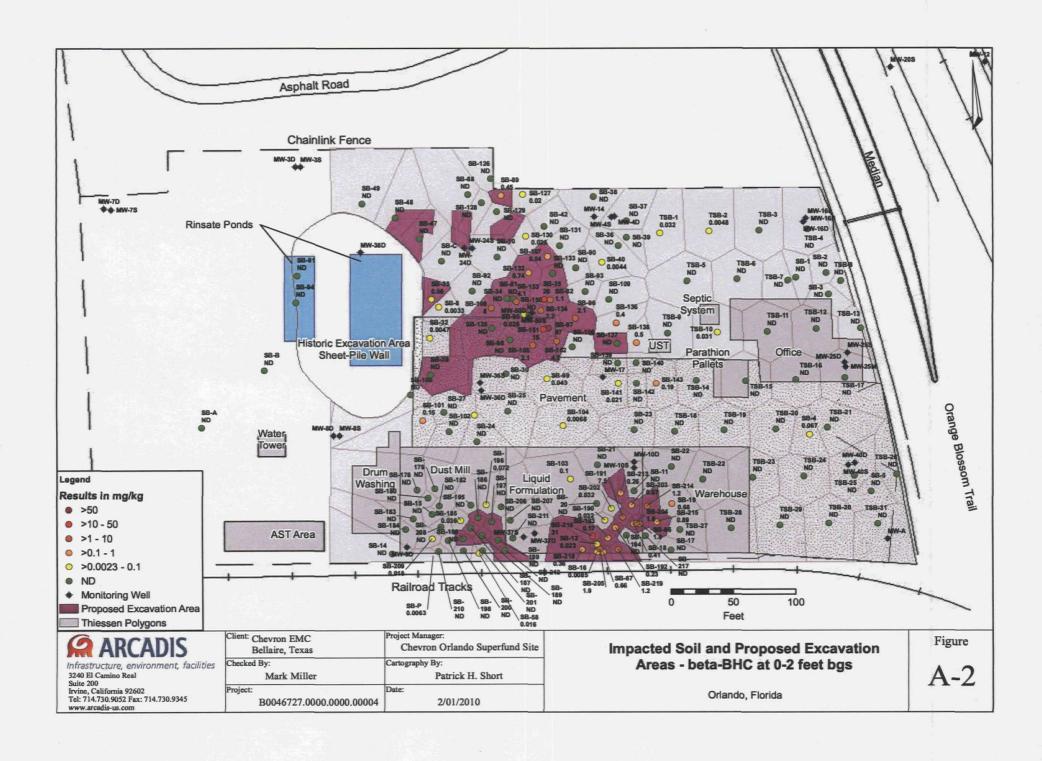

PAGESETUP:

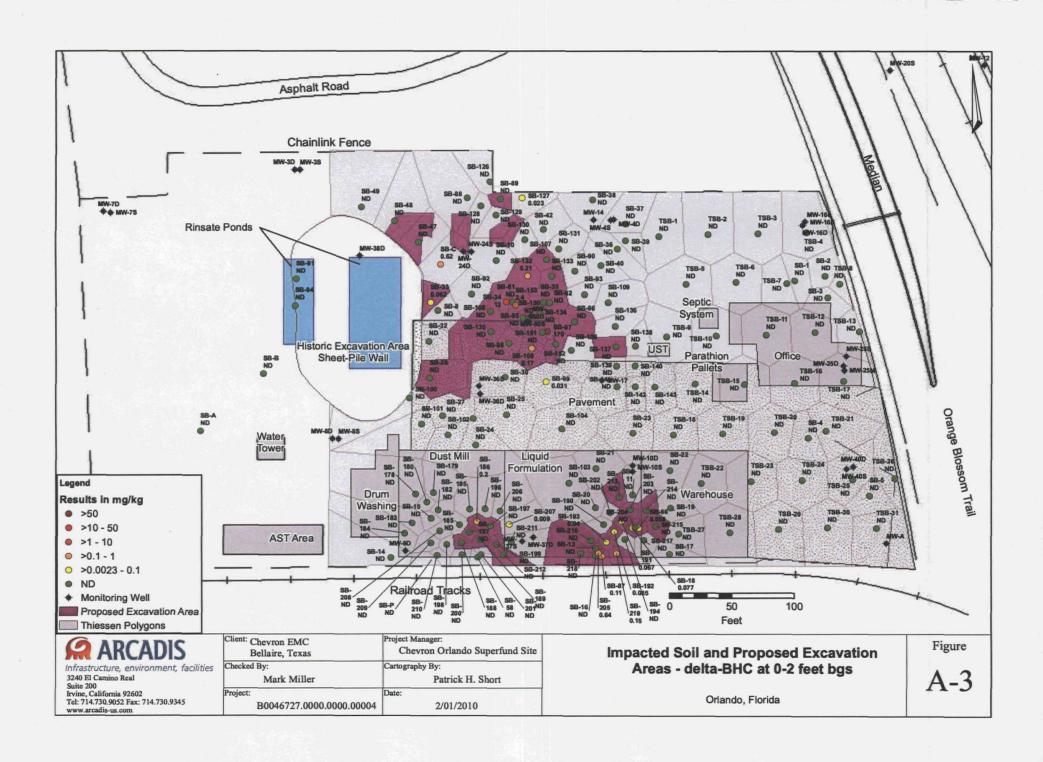

ACADVER: 17.0S (LMS TECH)

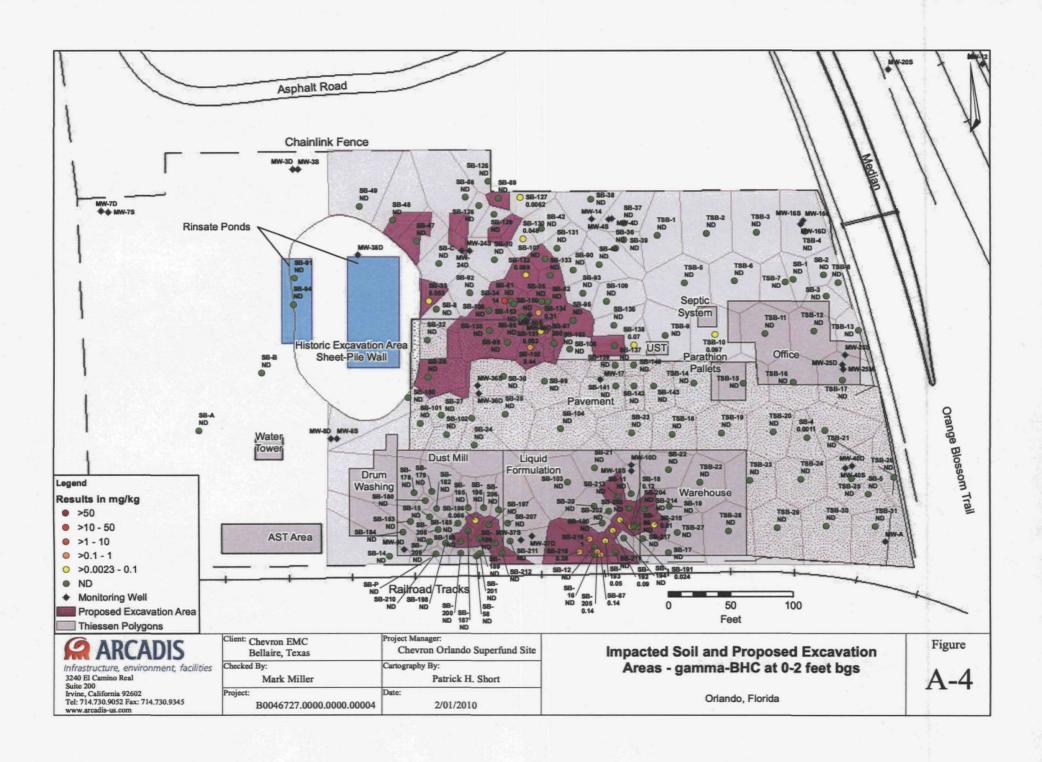

LYR:ON=",OFF="REF" SAVED: 1/14/2008 10:30 AM

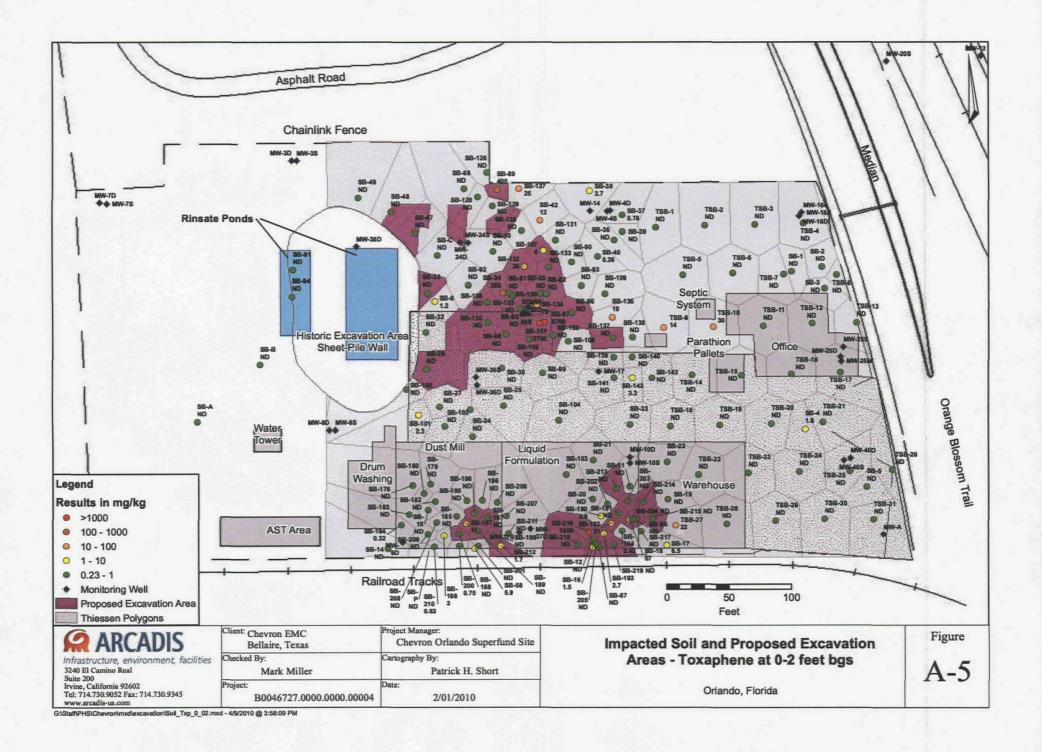
PD: TM: TR: LAYOUT: 1 S

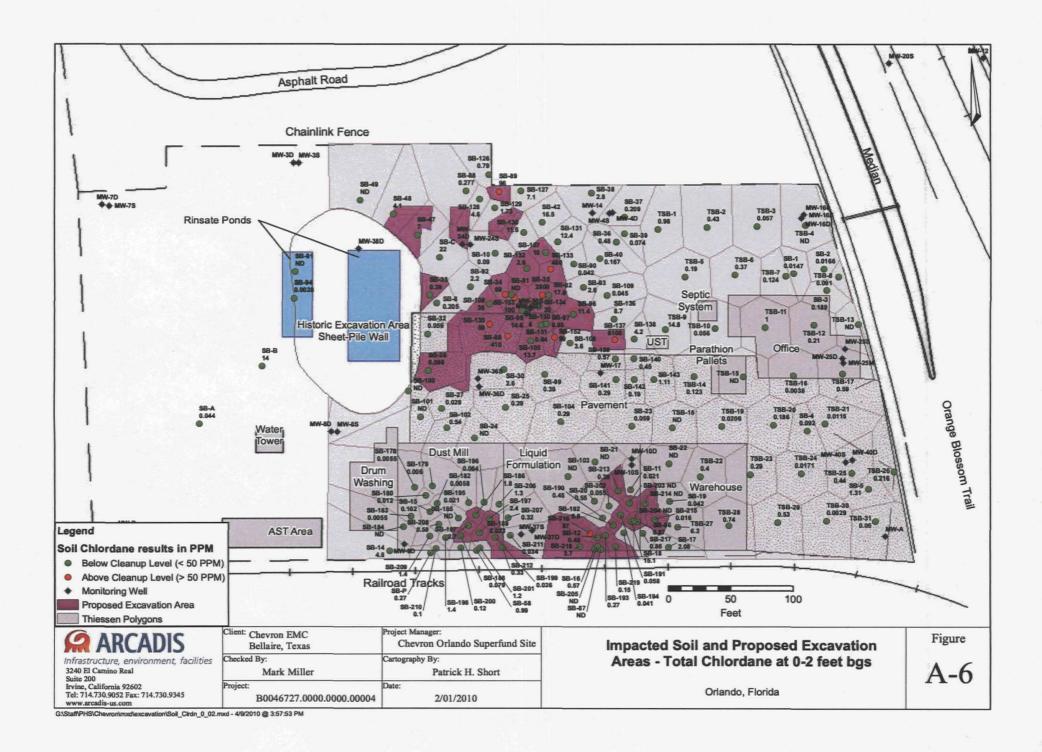

ARCADIS

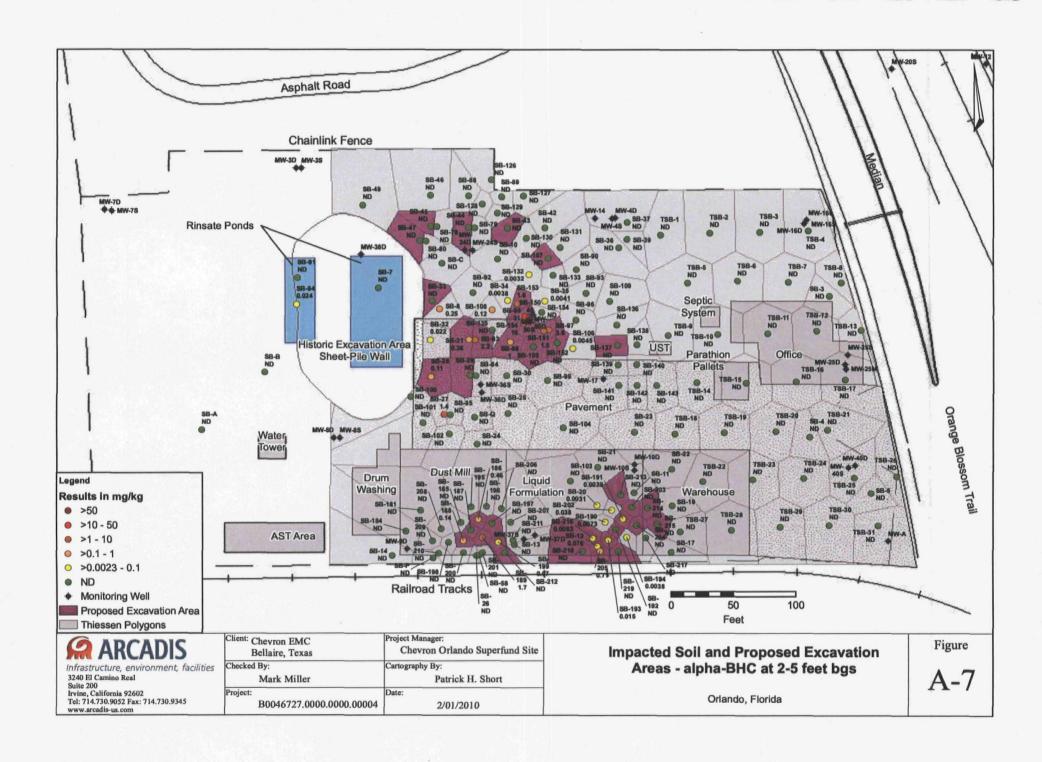

Appendices

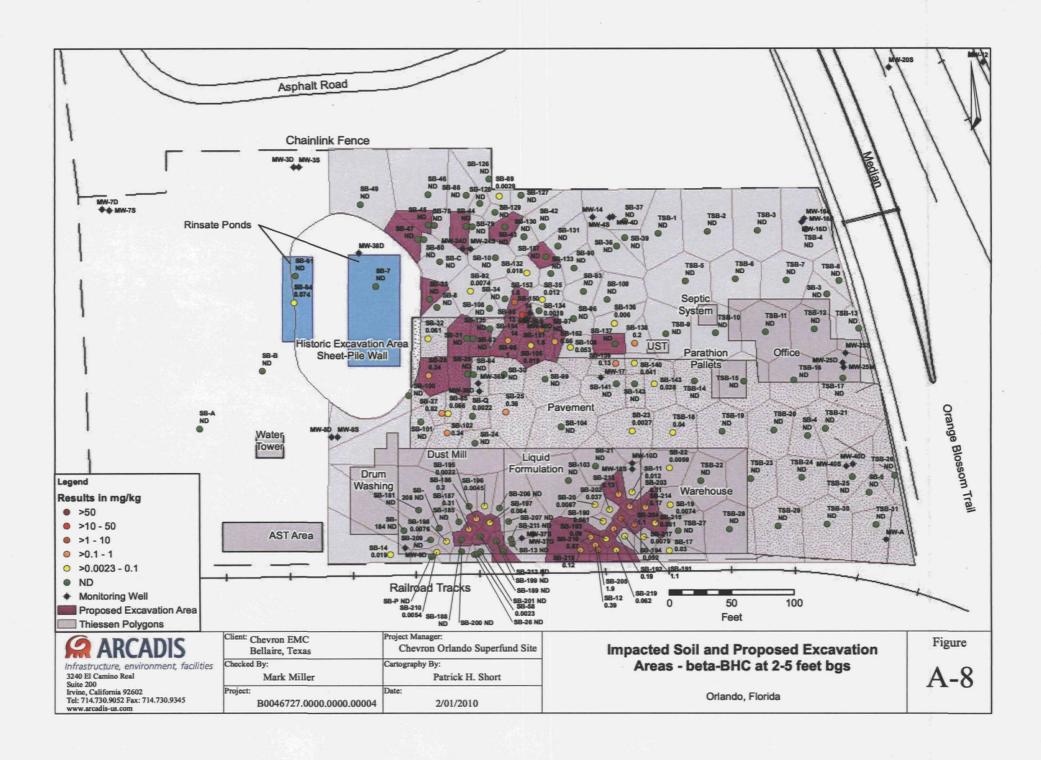

ARCADIS

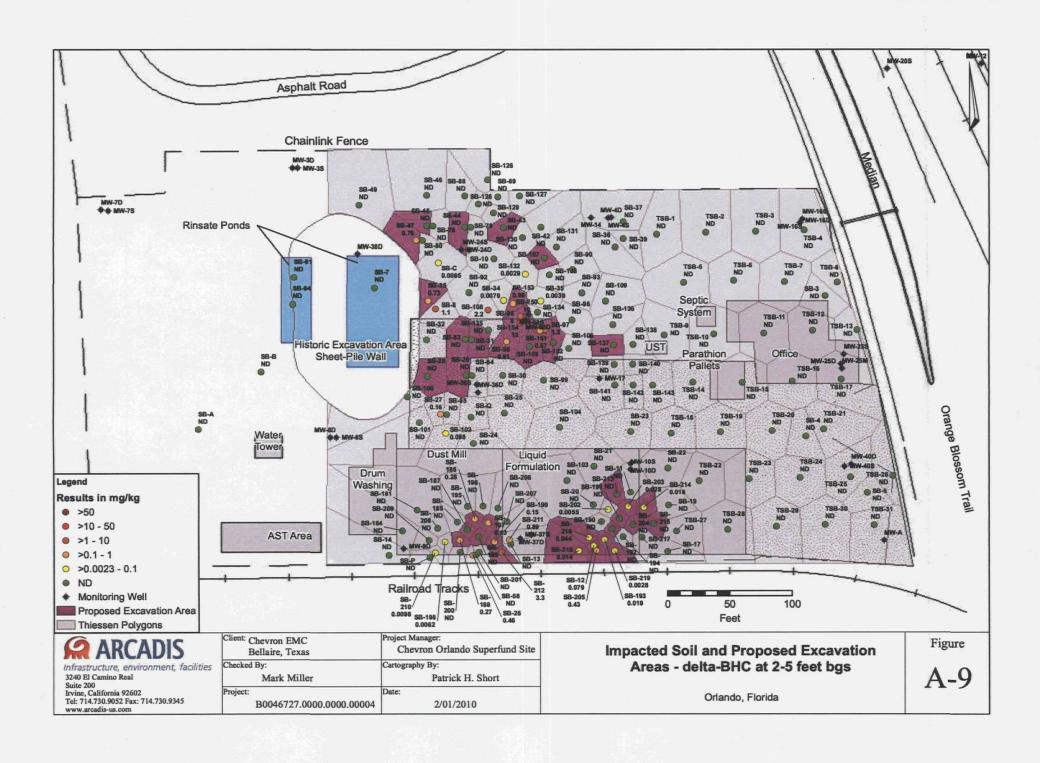

Appendix A

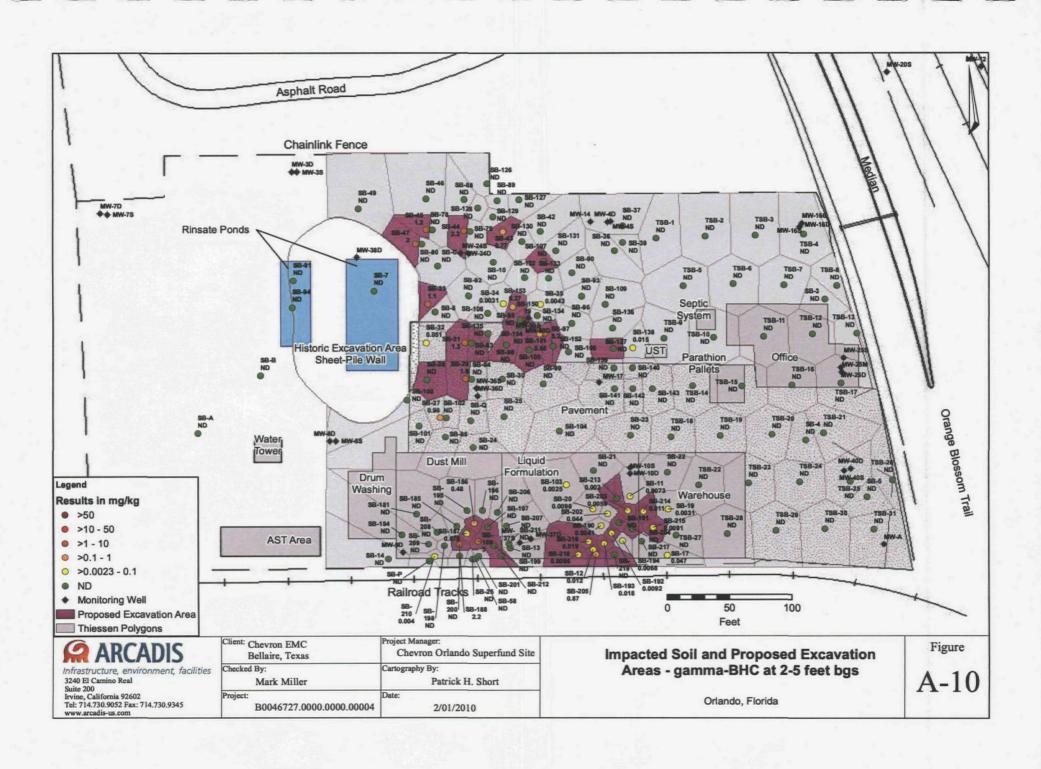

Site Plans with Analytical Results

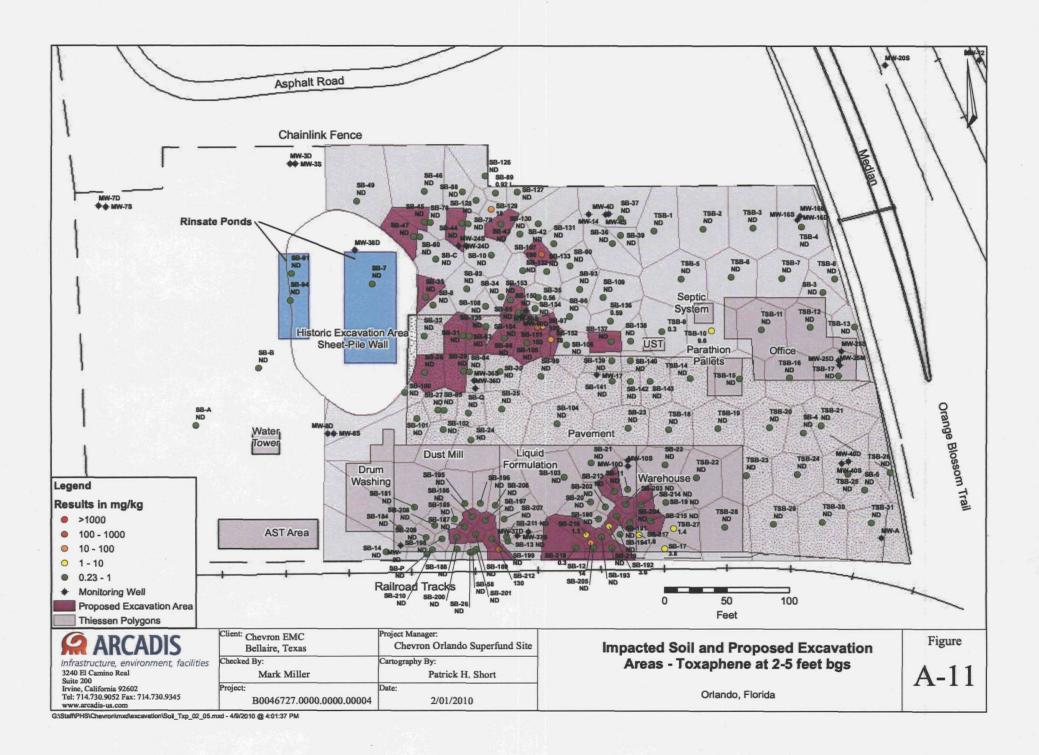


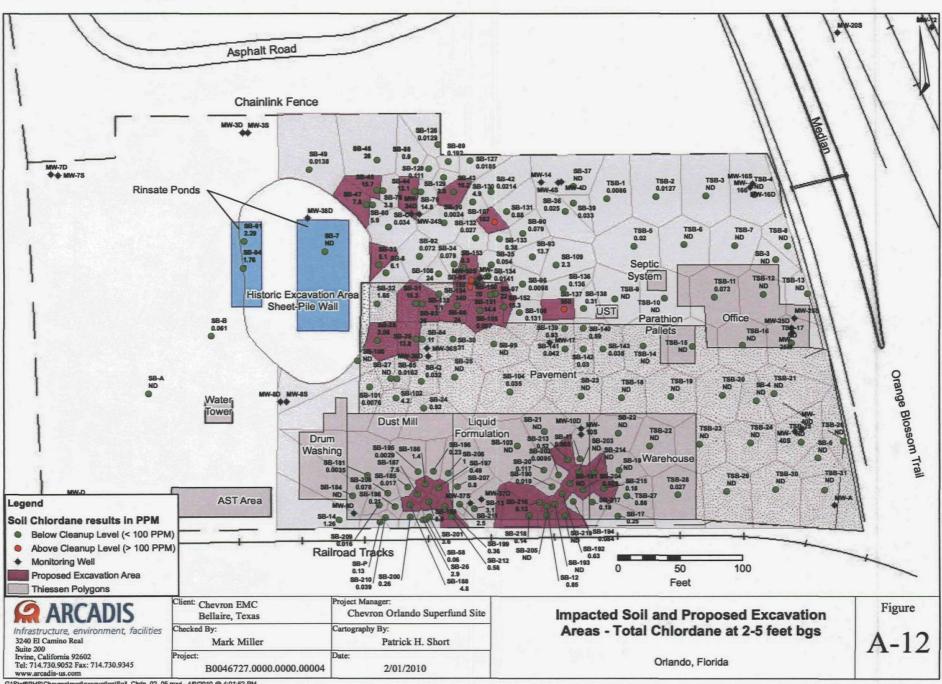


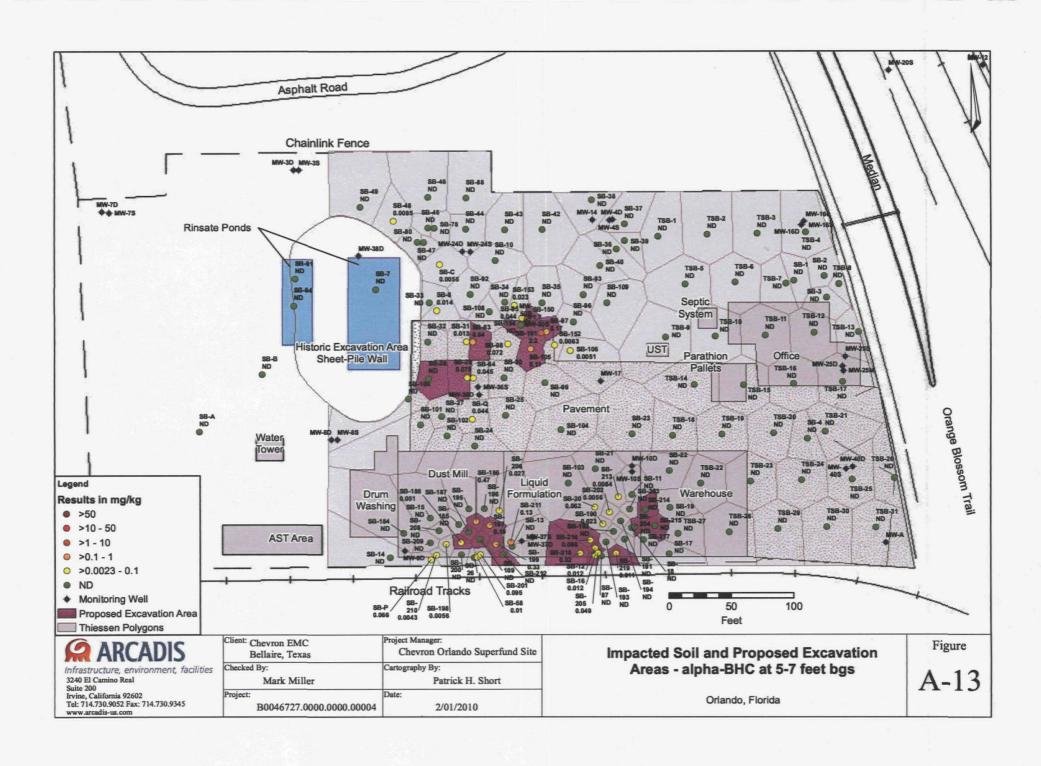


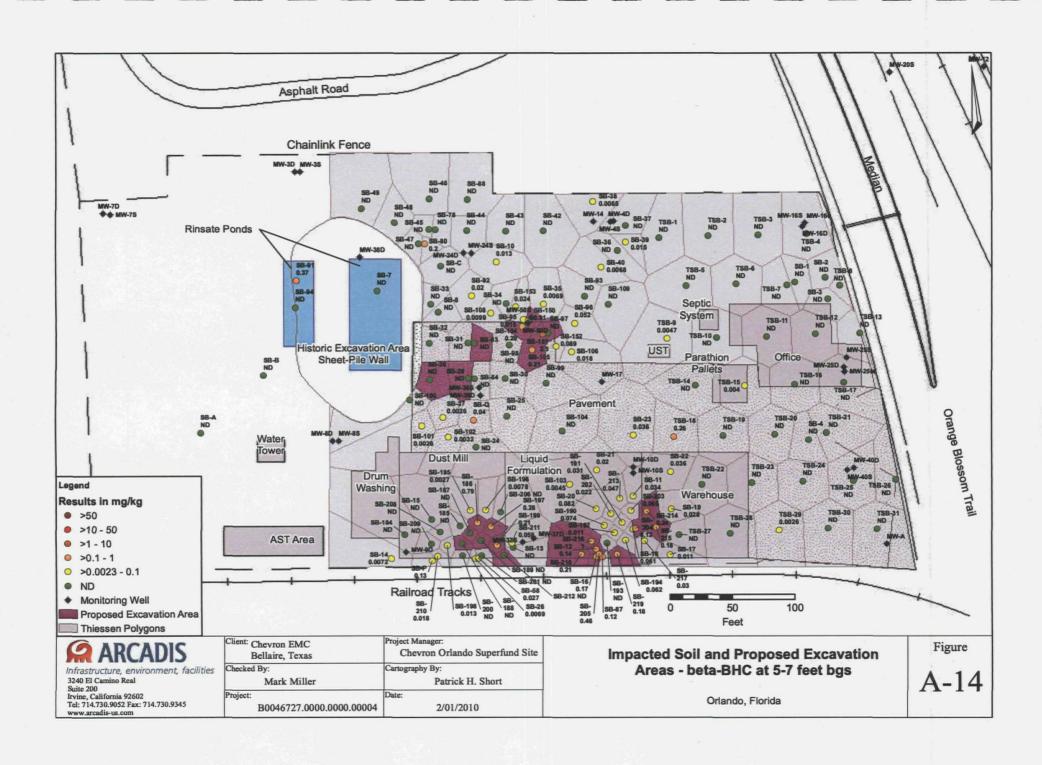




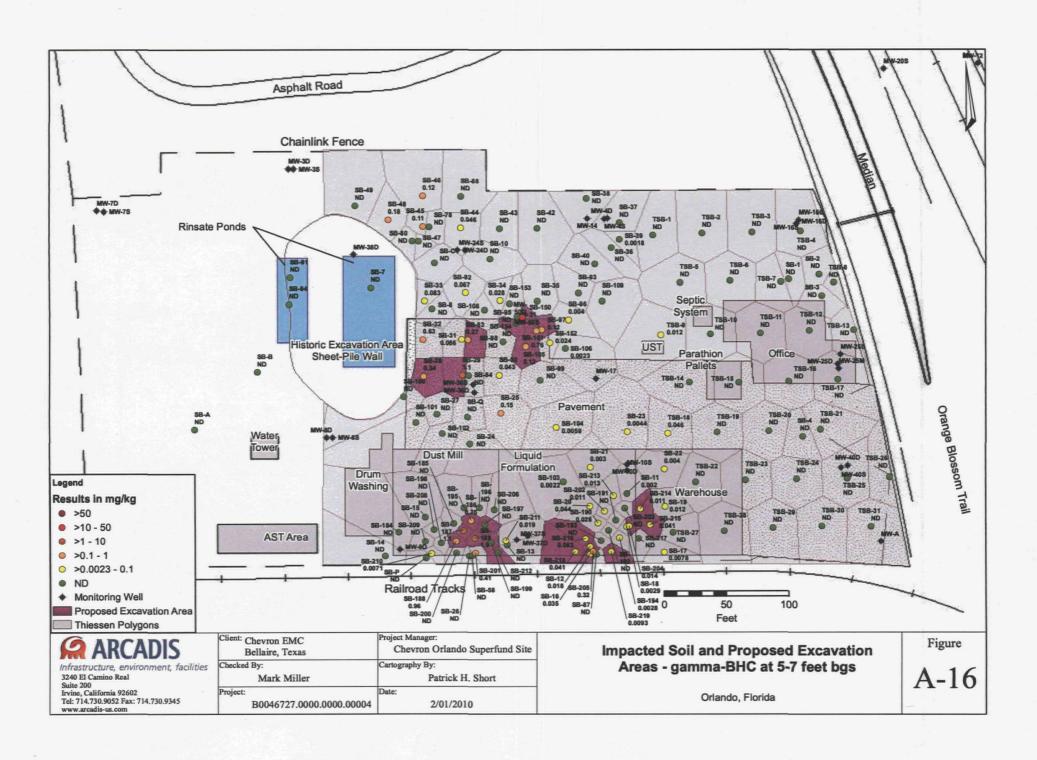


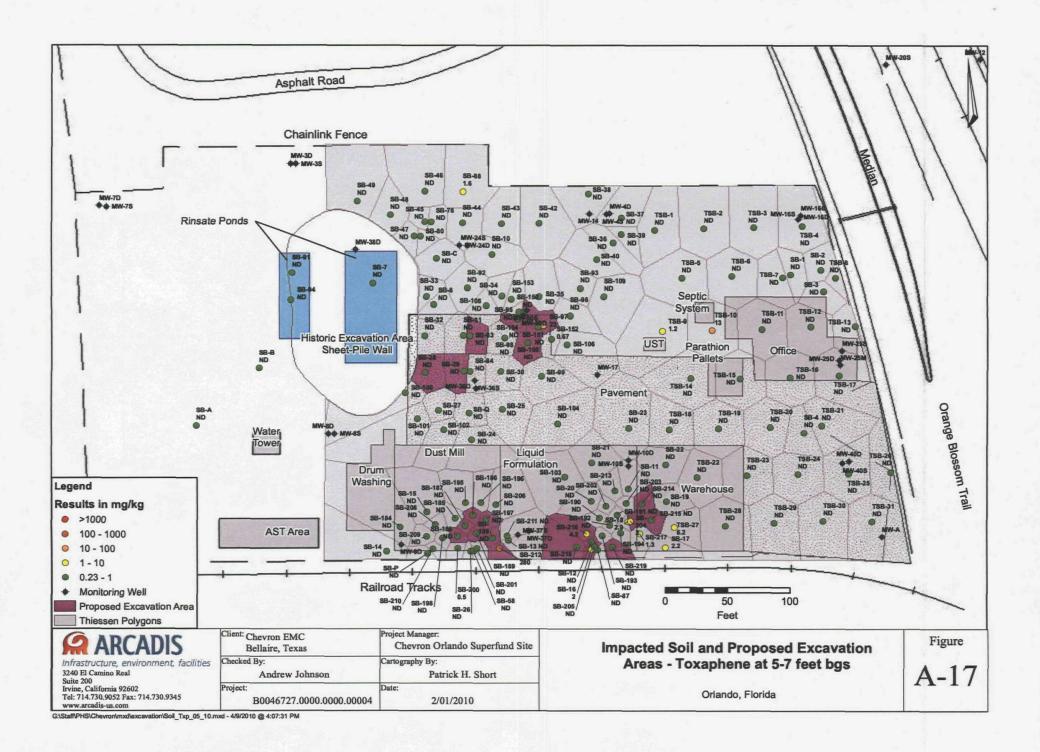


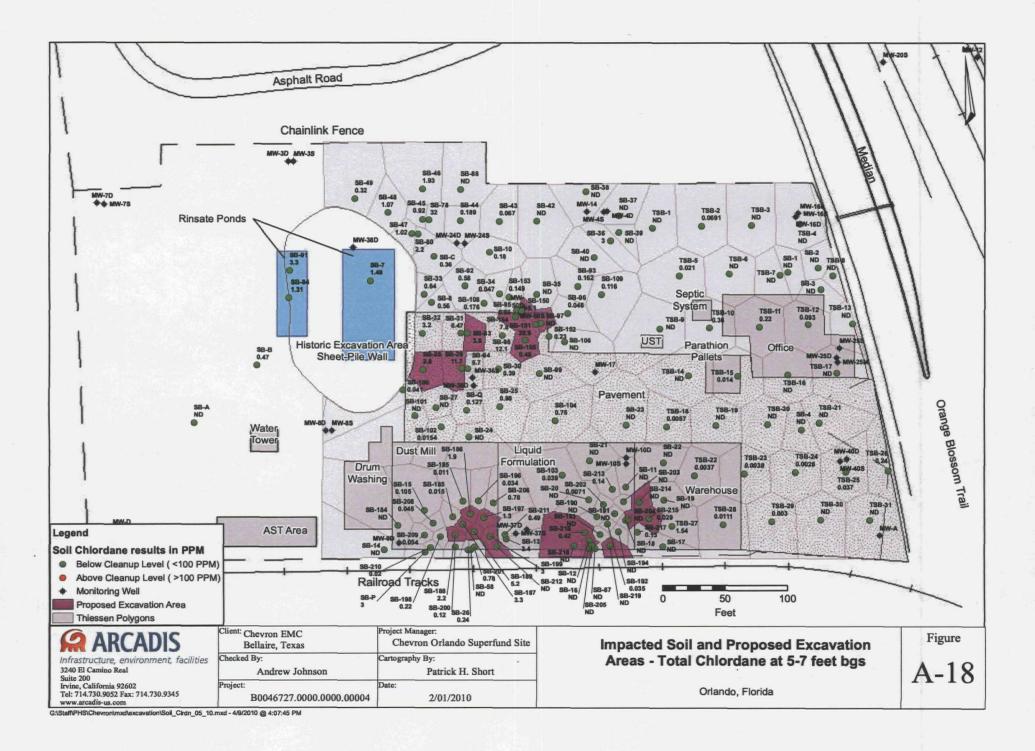












ARCADIS

Appendix B

Area-Weighted Average Details

Soil Sample	α-BHC (0-2 ft bgs	· -	Th	eissen Polyg	on			Excav	ation
Solitample Concentration Area Area Care		-				I				
D	Soil Sample	Concentration	Area	, -	polygon	Total Mass	% mass	AWA	Area	Volume
No excavation	•	- '		1	1	(grame)				(yd³)
SB-106		(mg/kg)	(11)	(it -nig/kg)		(grains)	<u> </u>		(11)	(yu)
SB-107		* 1800 400 Is 18	15. 400	Principal Control		154379 86 49070	1 8 00/		Nonetra co	34
SB-106		AND A TOTAL OF THE STATE OF THE		10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	477 424-201 14-14-	The second				
SB-122	1		1,22			75, es,	724117 120		142.3 1.35. 2	57
\$\frac{8}{3}\frac{1}{3}\frac{1}{2}\frac{1}{2}\frac{1}{3}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}\frac{1}{3}\frac{1}{3}\frac{1}{3}\frac{1}\frac{1}\frac{1}{3}\fr		1 1		- : ()	4 11			114.1		₹ .** 86
SB-133					,				133 41 31	<i>∑</i> ≈ 291
SB-134		7 10 22 11 10 10		Participation of the	201	11 A SAN 1		1.5k //5 - 1 - 1 - 1	27.4. 27	± 130
SB-135 0.0900. 136			~~~	, 20 · · · 22 · · · · ·	1,		V		3 7 7 7 7	156 156
SB-150			100,000		F. 4.4.4.					168
SB-151		0:9000 K	10.1	<u> </u>						ુુ∷ 23∕
SB 1522	SB-150	0.0660±U	.,≎ 136	9	3 0.74	March A and				-,∷ 244
SB-153	SB-151;	5:5000	153	844	69.65	. , , , , , , , , , , , , , , , , , , ,		74.5	#*-/3;452	256
SB-16	SB-152	0:1600 U	317	#12 (S. 1951)	东京提高 4:19	283	3%	* 3.058	3,769	a* 279
SB-18	SB-153	9:9000	4.水178	71,759		428		·v. 3.015	::::3,947	. 5 292
SB-186	SB-16	0.0031.U.	<i></i> 90	0	ሂ 💸 💆 0.02	F 1	4%		4,036	299
SB-187	SB-18% 19	0.0500 Is	7.1	河南北海洋省4	0.29	428	. ∴ 4%	€/₁3:015	4,107	304
SB-191	SB-186 7 7		129	10	0.81	429		-3.015	. 4,237	- 314
SB-191	SB-187	0.0035(U-:	. 110	0	0.03	429	4%	3.015	4,347	322
SB-193	SB-191/	0.0230	' i 123	M 1 1 3		430	4%	3:014	4,470	w. 331
SB-197	SB-192	· 0:0310 U	·: 110	25 3	0.28	430	. 4%	§ 3.014	4,580	339
SB-203	SB-193	~ : 0.0370		30.0035 WEG5	€ 0.39	430	4%	₹3:014	4,706	×-3=349
SB-203	SB-197	0:0310 U	173	* · 5	0:44	431		3.014	4.879	361
SB-204	SB-203: ***	-		7 T. 2 2			4%	3.014	5.034	∑.~373
SB-205				7		431	4%	3.014	-5.078	376
SB-213				55 FF 3 2				3.014	D	₹ 378
SB-214 0.0190 290 6 0.46 432 4% 3.014 5.741 SB-215 0.0031 273 1 0.07 432 4% 3.014 6,014 SB-216 0.4800 424 204 46.80 449 4% 3.008 7,289 SB-218 0.0310U 851 26 2.18 451 4% 3.008 7,289 SB-219 0.0400 292 122 0.96 452 4% 3.008 7,581 SB-28 0.0031U 1,045 3 0.27 452 4% 3.008 8,626 SB-34 49,0000 315 15,444 1,27463 1,727 16% 2,633 9,336 SB-35 33,0000 202 6,661 54973 2,277 21% 2,471 9,538 SB-47 0.0160 K 4,017 16 1,34 2,278 21% 2,471 10,676 SB-81 0.0330 K				850 3°5 30 8 1	10, 11,000	~	2			404
SB-215 0.0031 273 0.07 432 4% 3.014 6,014 SB-216 0.4800 424 204 16.80 449 4% 3.008 6,438 SB-218 0.0310 U 851 26 218 451 4% 3.008 7,289 SB-219 0.0400 292 122 0.96 452 4% 3.008 7,581 SB-28 0.0031 U 1,045 3 0.97 452 4% 3.008 8,626 SB-33 0.0180 U 395 7 0.59 453 4% 3.008 9,021 SB-34 49,0000 315 15,444 1,274.63 1,727 16% 2,633 9,336 SB-37 0.0160 K 4,017 16 3,34 2,277 21% 2,471 10,555 SB-81 0.030 K 301 10 0.82 2,278 21% 2,471 10,678 SB-87 0.030 K 301				6		7 7 7 7 7	E 13.51			425
SB-216 0;4800 424 204 16:80 449 4% 3:009 6;438 SB-218 0;0310 851 26 2:18 451 4% 3:008 7;289 SB-219 0;0400 292 12 0.96 452 4% 3:008 7;289 SB-38 0;0180H 395 7 0.59 453 4% 3:008 9;021 SB-34 49,0000 315 15,444 1274:63 1,727 16% 2:633 9;336 SB-35 33,0000 202 6;661 549:73 2,277 21% 2:472 9;538 SB-47 0.0160 K 4,017 16 1,34 2,278 21% 2,471 10,555 SB-81 0.0035 U 123 70 0.04 2,278 21% 2,471 10,678 SB-86 0.080 M 301 10 0.82 2,279 21% 2,471 11,076 SB-87 0.090 M		- 4,,, 4		100 sets . 100 mg	73.33		110		111	445
SB-218 0.0310 U 851 26 2.18 451 4% 3.008 7,289 SB-219 0.0400 292 12 0.96 452 4% 3.008 7,581 SB-28 0.0031 U 1,045 3 0.27 452 4% 3.008 8,626 SB-33 0.0180 U 395 7 0.59 453 4% 3.008 9,021 SB-34 49,000 315 15,444 1,274,63 1,727 16% 2,633 9,336 SB-35 33,0000 202 6,661 549,73 2,277 21% 2,471 10,555 SB-81 0.0330 K 301 10 0.62 2,278 21% 2,471 10,575 SB-82 0.0330 K 301 10 0.62 2,279 21% 2,471 10,678 SB-86 0.080 K 213 17 140 2,282 21% 2,471 11,776 SB-95 0.080 K <td>- H2, M1</td> <td></td> <td></td> <td>204</td> <td></td> <td>1.70</td> <td>.,,</td> <td></td> <td></td> <td>477</td>	- H2, M1			204		1.70	.,,			477
SB-219						1 2 2	1			ž 4 540
SB-28 0.0031 U 1,045 3 0.27 452 4% 3.008 6,626 SB-33 0.0180 U 395 7 0.59 453 4% 3.008 9,021 SB-34 49,0000 315 15,444 1,274 63 1,727 16% 2,633 9,336 SB-35 33,0000 202 6,661 549,73 2,277 21% 2,471 10,555 A SB-81 0.00160 K 301 10 0.02 2,78 21% 2,471 10,678 SB-82 0.0330 K 301 10 0.82 2,279 21% 2,471 10,779 SB-86 0.0800 K 213 17 140 2,281 21% 2,471 11,075 SB-87 0.0800 K 213 17 140 2,281 21% 2,471 11,075 SB-98 0.0800 K 213 17 140 2,281 21% 2,470 11,388 SB-97 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>562</td>										562
SB-33 0.0180 395 7 0.59 453 4% 3.008 9,021 SB-34 49,0000 315 15,444 1,274 63 1,727 16% 2,633 9,336 SB-35 33,0000 202 6,661 549,73 2,277 21% 2,471 10,555 SB-81 0.0035 U 123 0 0.04 2,278 21% 2,471 10,678 SB-82 0.0330 K 301 10 0.82 2,279 21% 2,471 10,979 SB-86 0.0800 K 213 10 0.64 2,280 21% 2,471 11,075 SB-87 0.0800 K 213 17 140 2,282 21% 2,471 11,076 SB-89 0.0800 K 213 17 140 2,282 21% 2,470 11,591 SB-96 0.2700 589 159 13,12 2,297 21% 2,470 11,591 SB-97 550,000				30 - 10 AIZ	3.57		4	***		639
SB-34 49,0000 315 15,444 1,274,63 1,727 16% 2,633 9,336 SB-35 33,0000 202 6,661 549,73 2,277 21% 2,471 10,555 SB-87 0.0160 K 1,017 16 1,34 2,278 21% 2,471 10,555 SB-81 0.0035 U 123 0 0.04 2,278 21% 2,471 10,678 SB-82 0.0330 K 301 10 0.82 2,279 21% 2,471 10,075 SB-86 0.0800 K 301 101 9 0.78 2,280 21% 2,471 11,075 SB-87 0.0800 K 213 17 1,40 2,282 21% 2,470 11,388 SB-95 0.0870 L 203 18 1,46 2,283 2,1% 2,470 11,591 SB-96 0.2700 L 589 159 13,12 2,297 21% 2,466 12,180				50 CTV 2.37				71.00		668
SB-35 33,0000 202 6,661 549,73 2,277 21% 2,472 9,538 SB-47 0.0160 K 4,017 16 1,34 2,278 21% 2,471 10,555 SB-81 0.0035 U 123 0 0.04 2,278 21% 2,471 10,678 SB-82 0.0330 K 301 10 0.82 2,279 21% 2,471 10,979 SB-86 0.0800 K 96 8 0.64 2,280 21% 2,471 11,075 SB-87 0.0800 K 213 17 140 2,282 21% 2,470 11,388 SB-95 0.0870 D 203 18 146 2,283 21% 2,470 11,388 SB-95 0.0870 D 589 159 13,12 2,297 21% 2,470 11,591 SB-96 0.2700 D 589 159 13,12 2,297 21% 2,470 11,591 SB-97 <t< td=""><td></td><td></td><td>* ,</td><td>SULLE AAA</td><td></td><td>- 1 D. T. M</td><td>34, 313, 4, 175</td><td>*</td><td>.59.77-1</td><td></td></t<>			* ,	SULLE AAA		- 1 D. T. M	34, 313, 4, 175	*	.59.77-1	
SB-47 0.0160 K 1.07 16 1.34 2.278 21% 2.471 10,555 SB-81 0.0035 U 123 0 0.04 2.278 21% 2.471 10,678 SB-82 0.0330 K 301 0 0.082 2.279 21% 2.471 10,979 SB-86 0.0800 K 96 8 0.64 2.280 21% 2.471 11,075 SB-87 0.0940 I 101 99 0.78 2.281 21% 2.471 11,075 SB-89 0.0800 K 213 17 140 2.282 21% 2.470 11,388 SB-95 0.0870 203 18 146 2.283 21% 2.470 11,388 SB-95 0.0870 203 18 146 2.283 21% 2.470 11,388 SB-95 0.0870 203 18 146 2.283 21% 2.470 11,388 SB-95 2.090 2.486 12,180 2.297 21% 2.466 12,180 2.282 2										2 3 4707
SB-81 0.0035 U 123 0 0.04 2,278 21% 2,471 10,678 SB-82 0.0330 K 301 10 0.62 2,279 621% 2,471 10,979 SB-86 0.0800 K 96 8 0.64 2,280 21% 2,471 11,075 SB-87 0.0800 K 213 17 140 2,282 21% 2,470 11,388 SB-95 0.0870 L 203 18 146 2,283 21% 2,470 11,388 SB-96 0.2700 589 159 13,12 2,287 21% 2,466 12,180 SB-97 550,0000 181 99,546 8,215,89 10,512 98% 0.052 12,361 SB-98 3,0000 L 490 1,469 121,27 40,634 99% 0.017 12,851 SB-217 0,1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-30	- 11+2 or 11+ 11+	1311		4014)	4.4				~	782 × 782
SB-82 0:0330 K 301 10 0:82 2,279 21% 2471 10,979 SB-86 0:0800 K 96 8 0.64 2,280 21% 2471 11,075 SB-87 0:0940 I 101 99 0.78 2,281 22% 2471 11,176 SB-89 0.0800 K 213 17 140 2,282 21% 2,470 41,388 SB-95 0.0870 I 203 18 146 2,283 21% 2,470 11,591 40 2,289 2,1% 2,470 11,591 40 40 1,469 13,12 2,287 21% 2,466 12,180 40 40 490 1,469 12,127 40,634 99% 0.017 12,851 40 40 1,469 12,127 40,634 99% 0.017 12,851 40 40 1,469 12,127 40,634 99% 0.017 12,851 40 40 1,469 12,127 40,634 99% 0.017 12,851			1.02			4		0.474	· · · · · · · · · · · · · · · · · · ·	791
SB-86 0.08001 96 8 0.64 2,280 21% 2,471 11,075 SB-87 0.0940 1 101 99 0.78 2,281 21% 2,471 11,176 SB-89 0.0800 K 213 17 140 2,282 21% 2,470 11,388 SB-95 0.0870 I 203 18 146 2,283 21% 2,470 11,591 SB-96 0.2700 589 159 13,12 2,297 21% 2,466 12,180 SB-97 550,0000 181 99,546 8,215,89 10,512 98% 0.052 12,361 SB-98 3,0000 I 490 1,469 121,27 40,634 99% 0.017 12,851 SB-217 0,1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0,1200 I 1,169 140 11,58 10,650 100% 0.008 15,713 1	3 4 , 4 , 4 , 4			Collaboration of the Collabora		: (app) - (-			-	813
SB-87 0.0940 I 101 9 0.78 2.281 21% 2.471 11,176 SB-89 0.0800 K 213 17 140 2,282 21% 2,470 41,388 SB-95 0.0870 L 203 18 146 2,283 21% 2,470 11,591 SB-96 0.2700 589 159 13,12 2,297 21% 2,466 12,180 SB-97 550,0000 181 99,546 8,215,89 10,512 98% 0.052 12,361 SB-98, 3,0000 L 490 1,469 121,27 40,634 99% 0.017 12,851 SB-217 0,1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0,1200 I 1,169 140 11,58 10,650 100% 0.012 14,400 1 SB-30 0,1100 I 1,313 144 11,92 10,662 100% 0.008 15,713 <t< td=""><td></td><td>22 (10) E + E + (10 + 10) + (10</td><td></td><td></td><td></td><td>1 20 14 44</td><td></td><td></td><td></td><td></td></t<>		22 (10) E + E + (10 + 10) + (10				1 20 14 44				
SB-89 0.0800 K 213 17 140 2,282 21% 2,470 41,388 SB-95 0.0870 L 203 18 146 2,283 21% 2,470 11,591 SB-96 0.2700 589 159 13,12 2,297 21% 2,466 12,480 SB-97 550,0000 181 99,546 8,215,89 10,512 98% 0.052 12,361 SB-98 3,0000 L 490 1,469 121,27 40,634 99% 0.017 12,851 SB-217 0,1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0,1200 I 1,169 140 11,58 10,650 100% 0.012 14,400 1 SB-30 0,1100 I 1,313 144 11,92 10,662 100% 0.008 15,713 1 SB-106 0,1000 K 785 78 6,48 10,669 100% 0.006				94. TIL						820
SB-95 0;0870 203 18 146 2,283 21% 2,470 11,591 SB-96 0,2700 589 159 13,12 2,297 21% 2,466 12,180 SB-97 550,0000 181 99,546 8,215,89 10,512 98% 0.052 12,361 SB-98 3,00001 490 1,469 121,27 10,634 99% 0.017 12,851 SB-217 0,1600 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0,1200 1,169 140 11.58 10,650 100% 0.012 14,400 1 SB-30 0,1100 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0,1000 7,85 78 6,48 10,669 100% 0.006 16,497 1 SB-5 0,0914 720 66 5,42 10,674 100% 0.005			35.0	Participation of the Company of the	, , , , , , , , , , , , , , , , , , , ,	(1000 - 2,20)				. ₹ 828
SB-96 0.2700 589 159 13.12 2.297 21% 2.466 12/180 SB-97 550,0000 181 99,546 8,215.89 10,512 98% 0.052 12/361 SB-986 3,00001 490 1,469 121.27 10,634 99% 0.017 12/851 SB-217 0,1600 0 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0,1200 1 1,169 140 11.58 10,650 100% 0.012 14,400 1 SB-30 0,1100 1 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0,1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0,0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0,0800 K <td></td>										
SB-97 550,0000 181 99,546 8,215,89 10,512 98% 0.052 12,361 SB-984 3,00001 490 1,469 121,27 10,634 99% 0.017 12,851 SB-217 0,1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0,1200 I 1,169 140 11.58 10,650 100% 0.012 14,400 1 SB-30 0,1100 I 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0,1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0,0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0,0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0,0310 U 184 6 0.47 10,6			~> 203	18	1.46	2,283	21%	* 2.4/0	31,7,591	-3 ≠ \ 855
SB-986 3.000001 490 1,469 121.27 40,634 99% 0.017 12,851 SB-217 0.1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0.1200 I 1,169 140 11.58 10,650 100% 0.012 14,400 1 SB-30 0.1100 I 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0.1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0.0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18										
SB-217 0.1600 U 380 61 5.01 10,639 100% 0.015 13,230 SB-C 0.1200 I 1,169 140 11.58 10,650 100% 0.012 14,400 1 SB-30 0.1100 I 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0.1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0.0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1										
SB-C 0.1200 I 1,169 140 11.58 10,650 100% 0.012 14,400 1 SB-30 0.1100 I 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0.1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0.0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1									, 12,851	952
SB-30 0.1100 I 1,313 144 11.92 10,662 100% 0.008 15,713 1 SB-106 0.1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0.0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1			380	61						
SB-106 0.1000 K 785 78 6.48 10,669 100% 0.006 16,497 1 SB-5 0.0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1				140						
SB-5 0.0914 K 720 66 5.42 10,674 100% 0.005 17,217 1 SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1	SB-30	0.1100 I			11.92					
SB-136 0.0800 K 667 53 4.41 10,679 100% 0.004 17,884 1 SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1	SB-106	0.1000 K	785	78	6.48	10,669	100%			
SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1	SB-5	0.0914 K	720	66	5.42	10,674	100%	0.005	17,217	1,275
SB-208 0.0310 U 184 6 0.47 10,679 100% 0.003 18,068 1 SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1	SB-136	0.0800 K	667	53		10,679	100%			
SB-92 0.0170 K 839 14 1.18 10,680 100% 0.003 18,907 1	SB-208		184		0.47	10,679	100%	0.003	18,068	1,338
		0.0160 K	778	12	1.03	10,681				

α-ВНС	0-2 ft bgs		The	eissen Polyg				Excavation	
			Weighted	Mass/					
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-25	0.0155 K	1.630	25	2.09	10.684	100%	0.002	21.816	1.616
SB-17	0.0155 K	645	10	0.83	10,685	100%	0.002	22,461	1,664
SB-19	0.0140	638	9	0.74	10,685	100%	0.001	23,099	1,711
SB-127	0.0076 I	558	4	0.35	10.686	100%	0.001	23.657	1,752
SB-209	0.0076	256	2	0.16	10,686	100%	0.001	23,913	1,771
SB-32	0.0045 I	813	4	0.30	10,686	100%	0.001	24,726	1,832
SB-130	0.0040 U	604	2	0.20	10,686	100%	0.001	25,330	1,876
SB-99	0.0035 U	1,266	4	0.37	10,687	100%	0.001	26,596	1,970
SB-P	0.0033 U	210	1	0.06	10,687	100%	0.001	26,806	1,986
SB-109	0.0033 U	979	3	0.27	10,687	100%	0.001	27,785	2,058
SB-183	0.0033 U	434	1	0.12	10,687	100%	0.001	28,219	2,090
SB-184	0.0033 U	1,396	5	0.38	10,688	100%	0.001	29,614	2,194
SB-198	0.0033 U	160	1	0.04	10,688	100%	0.001	29,774	2,206
SB-210	0.0033 U	144	0	0.04	10,688	100%	0.001	29,918	2,216
SB-128	0.0032 U	490	2	0.13	10,688	100%	0.001	30,408	2,252
SB-129	0.0032 U	590	2	0.16	10,688	100%	0.001	30,998	2,296
SB-185	0.0032 U	217	1	0.06	10,688	100%	0.001	31,215	2,312
SB-195	0.0032 U	524	2	0.14	10,688	100%	0.001	31,739	2,351
SB-196	0.0032 U	447	1	0.12	10,688	100%	0.001	32,186	2,384
SB-190	0.0032 U	195	1	0.05	10,688	100%	0.001	32,381	2,399
SB-202	0.0032 U	157	1	0.04	10,688	100%	0.001	32,538	2,410
SB-10	0.0032 U	1,092	3	0.29	10,689	100%	0.001	33,630	2,491
SB-11	0.0032 U	565	2	0.15	10,689	100%	0.000	34,195	2,533
SB-27	0.0031 U	881	3	0.23	10,689	100%	0.000	35,077	2,598
SB-15	0.0031 U	174	1	0.04	10,689	100%	0.000	35,251	2,611
SB-22	0.0031 U	977	.3	0.25	10,689	100%	0.000	36,227	2,683
SB-194	0.0031 U	173	1	0.04	10,689	100%	0.000	36,400	2,696
SB-20	0.0031 U	616	2	0.16	10,690	100%	0.000	37,016	2,742
SB-36.	0.0030 U	752	2	0.19	10,690	100%	0.000	37,768	2,798
SB-4	0.0029 Ú	826	2	0.20	10,690	100%	0.000	38,594	2,859
TSB-22	0.0025 U	1,278	3	0.26	10,690	100%	0.000	39,873	2,954
TSB-27	0.0025 K	771	2	0.16	10,690	100%	0.000	40,643	3,011
SB-8	0.0017 K	599	1	0.09	10,691	100%	0.000	41,242	3,055
ND	0.0000	0	0	0.00	10,691	100%	0.000	41,242	3,055
ND	0.0000	0	0	0.00	10,691	100%	0.000	41,242	3,055
ND	0.0000	0	. 0	0.00	10,691	100%	0.000	41,242	3,055
ND	0.0000	0	0	0.00	10,691	100%	0.000	41,242	3,055
ND	0.0000	0	0	0.00	10,691	100%	0.000	41,242	3,055
ND	0.0000	0	0	0.00	10,691	100%	6.240	41,242	3,055
Total	<u> </u>	41,242	129,529	10,691			L		

AWA - Area weighted average
Shaded cells indicate soil polygons to be removed via excavation

' ')-2 ft bgs	Theissen Polygon							ation
: I			Weighted	Mass/	 [1		l
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID I	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
No excavation			_	4,479			0.543		
SB-105	2.1000	463	972	80.24	->	2%	0.533	463	∴ 34
SB-107	0.5400	307	166	· 13.66	94	2%	.0.532	769	57 ,
SB-108	8.0000	391	3,131	258.40	352	8%	0.500	表 1161	·* 86
SB-12	0.0230	63	13 沙洲河到	0.12	352	∴	0.500	1,224	91
SB-132	0.7400	× 533	(394 ° 394	32.55	385	9%	0.496	1,757	';; <u>;</u> :130
SB-133	0.5000 K s	349	174	14.39	399	9%	0.495	2,105	3 156
SB-134	7:7000	162	1,245	102.75	502	11%	0.482	2,267	168
SB-135	0.5500 K	*895	- 492	40.63	543		0.477	3,162	234
SB-137	0.4550 K	418	-190	√215:71	€- 558	12%	0.475	3,580	265
SB-150	0.0400 · U∗	√136	5	0.45	559		0.475	3.717	275
SB-151	15.0000	153	2.302	189.96	749	17%	0.452	3.870	± 287
SB-152	4.2000	317	1 332	109.90	859	19%	0.439	4.187	310
SB-153	4.1000	178	728	60.12	919	21%	0.432	4,365	323
SB-16	0.0085	90	194 395 TA 121	0.06	919	.21%	0.432	4.455	330
SB-18	0.4100	7.1	. 29	€2.40	.921	21%	0.431	4.526	: 335
SB-186	0.0020 U v	129	.0	0.02	** × 921		0.431	* 4.655	345
SB-187	0.0021 U	110	.0	0.02	921	21%	⊕ 0.431	4.765	353
SB-188		142	and the same of the same	0.03	921	21%	0.431	4.907	363
	0.0022 U	154	0	- 0.03	921	21%	0.431	5.062	∴±375
SB-191	7.5000	123	923	76.16	998	22%	0.422	5,185	384
SB-192	- 0.2300	110		2.08	1.000	22%	0.422	5,165	392
SB-193	0.1700	126	25 21	1.77	1,000		*** 0.422	5,254	402
SB-197	0.0190:U	173		0.27	1:002	22%	0.422		414
	0.0190.0	1/3	3	0.27		- 22%	7	5,593	
SB-199				Marie 170 ha	1,002		÷ 0.422	5,7,57	426 438
SB-203	0.6700	155	104	*8.59	1,010	≈⊈23% 23%	0.421	5,912	
SB-204	1:6000 - , ,	44	70	5.81	1,016	23%	0.420	5,956	441
	1.9000	3 - 24	46	√.∖.∖.3.81	1,020	:: 23%	50:419	5,980	443
SB-212	0.0021 U	299	1 3 3 1 1 1 1	``0.05	1,020	23%	0.419	6,279	465
SB-213,	0.2600	349	91	7.48	1,027	23%	0:419	6,628	491
SB-214***	1.2000	290	348	28:76	1,056	24%	°0.415	6,918	512
SB-215	0.8900	273	243	20.04	1,076	24%	0:413	7,191	533
SB-216	31.0000	424	13,149	್ಪ1,085:23	2,162	48%	0:281	7,615	- 564
SB-218	0.3600	851	306	25.29	2,187	49%	0.278	8,466	627
SB-219	1.2000	292	350	28.89	2,216	49%	0.274	8,758	649
SB-28									
	0.0600 1	395	24		2,218				
	0.2100 K		66		2,223				
			5,248			149 1		10,715	
	յլ (0.0021։ Ü	, 123	2.13		2,656			10,838	803
	1 1000	301	\$4. 331	27:31				11,138	825
SB-86	3 1.8000 · · · ·	<i>₹</i> . 96	17,4	14:32					
SB-87	0.6600	≨ ≨\101	66	5.48	2,704			<u>≥ 11,335</u>	840
SB-89	0.4500	213	96	7.90	2,711				
SB-95	ૄ: 0.0280≛I .ુ	203		0.47	2,712		© 0.214	图 11,751	870
SB-96	2.1000	5. 589			2,814	. 63%	0.202	- 12,340	914
SB-97	97.0000	4.181	17,556					12,521	
		490	245					13,011	

в-внс	0-2 ft bgs		The	issen Polyg	on			Excav	ation
p 2c	 -		Weighted	Mass/					
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Агеа	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-19	0.6800	638	434	35.80	4,319	96%	0.019	13,648	1,011
SB-138	0.5000	494	247	20.38	4,339	97%	0.017	14,142	1,048
SB-136	0.4000	667	267	22.03	4,361	97%	0.014	14,809	1,097
SB-143	0.1900 I	879	167	13.78	4,375	98%	0.013	15,688	1,162
SB-101	0.1500	1,807	271	22.37	4,397	98%	0.010	17,495	1,296
SB-103	0.1000	1,790	179	14.77	4,412	99%	0.008	19,285	1,428
SB-217	0.0950 U	380	36	2.98	4,415	99%	0.008	19,664	1,457
SB-196	0.0720	447	32	2.66	4,418	99%	0.007	20,111	1,490
SB-4	0.0670	826	55	4.57	4,422	99%	0.007	20,938	1,551
TSB-15	0.0625 K	1,594	100	8.22	4,431	99%	0.006	22,531	1,669
SB-106	0.0600 K	785	47	3.89	4,435	99%	0.005	23,316	1,727
SB-99	0.0430 I	1,266	54	4.49	4,439	99%	0.005	24,582	1,821
SB-185	0.0360	217	8	0.64	4,440	99%	0.005	24,798	1,837
TSB-1	0.0320	1,723	55	4.55	4,444	99%	0.004	26,521	1,965
SB-190	0.0320	195	6	0.51	4,445	99%	0.004	26,716	1,979
SB-202	0.0320	157	5	0.42	4,445	99%	0.004	26,873	1,991
TSB-10	0.0310	1,616	50	4.13	4,449	99%	0.004	28,489	2,110
SB-130	0.0250	604	15	1.25	4,451	99%	0.003	29,093	2,155
SB-141	0.0210 1	1,025	22	1.78	4,452	99%	0.003	30,118	2,231
SB-201	0.0210 U	138	3	0.24	4,453	99%	0.003	30,257	2,241
SB-127	0.0200	558	11	0.92	4,453	99%	0.003	30,815	2,283
SB-206	0.0200 U	946	19	1.56	4,455	99%	0.003	31,761	2,353
SB-208	0.0190 U	184	3	0.29	4,455	99%	0.003	31,945	2,366
SB-209	0.0180	256	5	0.38	4,456	99%	0.003	32,201	2,385
SB-58	0.0160	113	2	0.15	4,456	99%	0.003	32,314	2,394
TSB-20	0.0125 K	1,407	18	1.45	4,457	100%	0.003	33,721	2,498
SB-92	0.0105 K	. 839	9	0.73	4,458	100%	0.003	34,560	2,560
SB-30	0.0100 K	1,313	13	1.08	4,459	100%	0.002	35,873	2,657
SB-38	0.0100 K	1,070	11	0.88	4,460	100%	0.002	36,943	2,736
SB-42	0.0100 K	778	8	0.64	4,461	100%	0.002	37,720	2,794
SB-93	0.0100 K	501	. 5	0.41	4,461	100%	0.002	38,222	2,831
SB-B	0.0100 K	31	0	0.03	4,461	100%	0.002	38,252	2,833
SB-C	0.0100 K	1,169	12	0.97	4,462	100%	0.002	39,422	2,920
SB-25	0.0095 K	1,630	15	1.28	4,463	100%	0.002	41,052	3,041
SB-14	0.0095 K	1,873	18	1.47	4,465	100%	0.002	42,925	
SB-140	0.0095 K	377	4	0.30	4,465	100%	0.002	43,302	
SB-142	0.0095 K	421	4	0.33	4,465	100%	0.002	43,723	
SB-17	0.0095 K	645	6	0.51	4,466	100%	0.002	44,368	
SB-139	0.0095 K	461	4	0.36	4,466	100%	0.002	44,829	
SB-104	0.0068 I	2,055	14	1.15	4,467	100%	0.001	46,884	
SB-P	0.0063	210	1	0.11	4,468	100%	0.001	47,094	
TSB-21	0.0063 K	1,600	10	0.83	4,468	100%	0.001	48,694	
TSB-9	0.0063 K	1,439	9	0.74	4,469	100%	0.001	50,133	
TSB-2	0.0048	2,184	10	0.87	4,470	100%	0.001	52,317	3,875
SB-32	0.0047 I	813	4	0.32	4,470	100%	0.001	53,131	3,936
SB-40	0.0044 I	715	3	0.26	4,471	100%	0.001	53,845	
SB-8	0.0033	599	2	0.16	4,471	100%	0.001	54,444	
TSB-18	0.0025 U	1,235	3	0.25	4,471	100%	0.001	55,679	4,124

в-внс	0-2 ft bgs		The	issen Polyg	on			Excav	ation
-			Weighted	Mass/				-	
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft ²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-178	0.0025 U	2,795	7	0.58	4,472	100%	0.001	58,474	4,331
TSB-11	0.0025 U	1,610	4	0.33	4,472	100%	0.001	60,085	4,451
TSB-14	0.0025 K	1,465	4	0.30	4,472	100%	0.001	61,550	4,559
TSB-16	0.0025 U	1,590	4	0.33	4,473	100%	0.001	63,140	4,677
TSB-19	0.0025 U	1,609	4	0.33	4,473	100%	0.001	64,749	4,796
TSB-22	0.0025 U	1,278	3	0.26	4,473	100%	0.001	66,028	4,891
TSB-23	0.0025 K	1,593	4	0.33	4,473	100%	0.001	67,621	5,009
TSB-24	0.0025 U	1,460	4	0.30	4,474	100%	0.001	69,081	5,117
TSB-27	0.0025 K	771	2	0.16	4,474	100%	0.001	69,852	5,174
TSB-3	0.0025 U	2,133	5	0.44	4,474	100%	0.001	71,986	5,332
TSB-5	0.0025 K	1,915	5	0.40	4,475	100%	0.001	73,901	5,474
TSB-6	0.0025 K	1,635	4	0.34	4,475	100%	0.000	75,536	5,595
SB-102	0.0021 U	810	2	0.14	4,475	100%	0.000	76,346	5,655
SB-179	0.0021 U	756	2	0.13	4,475	100%	0.000	77,102	5,711
SB-184	0.0021 U	1,396	3	0.24	4,476	100%	0.000	78,497	5,815
SB-200	0.0021 U	203	0	0.04	4,476	100%	0.000	78,700	5,830
SB-210	0.0021 U	144	0	0.02	4,476	100%	0.000	78,844	5,840
SB-37	0.0021 U	1,040	2	0.18	4,476	100%	0.000	79,884	5,917
SB-39	0.0021 U	387	1	0.07	4,476	100%	0.000	80,271	5,946
SB-100	0.0020 U	1,220	2	0.20	4,476	100%	0.000	81,491	6,036
SB-109	0.0020 U	979	2	0.16	4,476	100%	0.000	82,470	6,109
SB-128	0.0020 U	490	1	0.08	4,476	100%	0.000	82,960	6,145
SB-129	0.0020 U	590	1	0.10	4,476	100%	0.000	83,550	6,189
SB-182	0.0020 U	242	0	0.04	4,476	100%	0.000	83,792	6,207
SB-183	0.0020 U	434	1	0.07	4,477	100%	0.000	84,225	6,239
SB-195	0.0020 U	524	1	0.09	4,477	100%	0.000	84,750	6,278
SB-198	0.0020 U	160	0	0.03	4,477	100%	0.000	84,910	6,290
SB-24	0.0020 U	1,649	3	0.27	4,477	100%	0.000	86,559	6,412
SB-90	0.0020 U	452	1	0.07	4,477	100%	0.000	87,011	6,445
SB-211	0.0020 U	756	2	0.12	4,477	100%	0.000	87,767	6,501
SB-10	0.0020 U	1,092	2	0.18	4,477	100%	0.000	88,859	6,582
SB-11	0.0020 U	565	1	0.09	4,477	100%	0.000	89,424	6,624
SB-27	0.0019 U	881	2	0.14	4,478	100%	0.000	90,306	6,689
SB-126	0.0019 U	727	1	0.11	4,478	100%	0.000	91,032	6,743
SB-131	0.0019 U	641	1	0.10	4,478	100%	0.000	91,674	
SB-15	0.0019 U	174	0	0.03	4,478	100%	0.000	91,847	6,804
SB-180	0.0019 U	148	0	0.02	4,478	100%	0.000	91,996	6,814
SB-207	0.0019 U	724	1	0.11	4,478	100%	0.000	92,720	
SB-21	0.0019 U	1,123	2	0.18	4,478	100%	0.000	93,843	
SB-22 _	0.0019 U	977	2	0.15	4,478	100%	0.000	94,819	
SB-23	0.0019 U	1,502	3	0.24	4,478	100%	0.000	96,322	7,135
SB-36	0.0019 U	752	1	0.12	4,479	100%	0.000	97,074	
SB-88	0.0019 U	2,064	4	0.32	4,479	100%	0.000	99,138	
SB-194	0.0019 U	173	0	0.03	4,479	100%	0.000	99,312	7,356
SB-20	0.0019 U	616	1	0.10	4,479	100%	0.000	99,927	7,402
ND	0.0000	0	0	0.00	4,479	100%	0.000	99,927	7,402
ND	0.0000	0	0	0.00	4,479	100%	0.000	99,927	7,402
ND	0.0000	, 0	0	0.00	4,479	100%	0.000	99,927	7,402

β -BHC	0-2 ft bgs		Theissen Polygon						
Soil Sample	Concentration (mg/kg)	Area (ft²)	Weighted Area (ft ² -mg/kg)	Mass/ polygon (grams)	Total Mass (grams)	% mass	AWA (mg/kg)	Area (ft²)	Volume (yd³)
ND	0.0000	0	0	0.00	4,479	100%	0.543	99,927	7,402
Total		99,927	54,269	4,479					

AWA - Area weighted average

δ-BHC (0-2 ft bgs		Theis	sen Polygo	n.			Excav	ation
0 5.1.0				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA -	Area	Volume
ID	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft ²)	(yd ³)
No excavation				3,119			1.045		
SB-105	0.1700	463	信息電子分79	6.50	6	% 0%	1.043	463	34
SB-107	0.0125 K	307	如高性疾病毒。4	0.32	置對 经签署	0%	1.043	463	34
SB-108	₹ 0.0650 K	291	25	2.10		ુ:ત∕-0%	₫ 1.042	1,161	86
SB-12-	医"0:0024 U <i>声</i>	63		0.01		ં .0%	1.042	1,224	^≒.×91
SB-132	慧 0.2100 三十	533	7 年 4 7 7 7 1 1 2	9.24	18	1%	1.039	1,757	130
SB-133 ***	0.6000 K	ি 349	209	ें ्री7:27	35	1%	1.033	2,105	ૂ 156
SB-134	0.6000 K	162	97	8.01	43	1%	1.030	2,267	. ° (168
SB-135	🦫 0.7000 K 🖟	895	627	- 51.71	95	∴ <u>.</u> :∴3%	. 1:013	3,162	234
SB-150	0.0500 ,U	136	元为7位3017	0.56	96	∴ 3%	1.013	3,298	244
SB-151 📉 🚉	0.1400 U	153	21	3	97	્રિ 🦙 3%	1.012	3,452	256
SB-152	0.1200 U	317	38	○ 3:14	(4) (101)	3%	1.011	3,769	279
SB-153,1 (35)	2.4000	7.2178	426	∴ ∴ 35.19	, ১৯ া 136	4%		3,947	292
SB-16	√s, 0.0024 U∂s	e 90	· 5 - 6 - 7 0	್ಲ∵್ಟ್0.02	`- ∵ 136	. 4%	<i>≟∉</i> 0.999	· 3,947	292
SB-18	0:0770 l 🔩		3 HG 1/1 325	0.45	136	4%	(, ₹0:999	4,107	:- °304
SB-186	0.2000	129	26	2.14	:138	4%	. 0.999	.* <u></u> 4,107	304
SB-187	0.0026 U	20110	0.4	0.02	138	4%	7 ;0:998	4,347	322
SB-191	0.0670	123	8	0.68	139	- 4%	0.998	4,470	331
SB-192	0.0850	<u> </u>	9	0.77	140	4%	¥ 0.998	4,580	
SB-193	0.0400	126	经正规数据证据	0.42	140	.4%	* 0.998	4,706	:: 349
SB-197	0.0240 U	173	4	0.34	141	· 5%	0:998	4,879	361
SB-199	∗ § 0.0025 U 📜	164	0 \$	0.03	141	. 5%	0.998	4,879	361
SB-204	0.0250 U	44	等。每次 强烈		141	5%	0.998	5,042	· 373
SB-205	. 10.6400	24	\$15.50 AV.16	1.28		. 5%	√0.997	5,11,1	∕∹∴379
SB-214	. 0:0024∖U_	290	公本的专门的变体	0.06	142	5%	::0.997	5,401	400
SB-215	0.0023 U	273	語が意味は	0.05	142	5%	₹0.997	5,674	÷ +420
SB-216⊖ું	0.1200 U	424	51	4.20	v. 146	.:5%	0.996	6,098	452
SB-219	0.1500	292	44	3.61	150	15%	0.995	6,390	473
SB-33	0.0620	.√. 395	24	2.02	152	5%	0.994	6,784	÷ 503
SB-34	12:0000	· 315	:. ° • ₹ ` 3,782	4312.15	464	15%	0.889	7,099	≟∴ 526
SB-351	0.1250 K	202	25	2.08	466	15%	Ç 0.889	7,301	541
SB-47		1,017	12	1.01	467	15%	0.888	8,318	616
SB-81	ີ 0.0026 ປ	123	0 100		467	15%	. 0.888	8,441	625
SB-82	€ 0.0250 K	301		0.62	468	15%	0.888	8.742	648
SB-86	0.0580:1		6		468	્રિ;;15%		8,838	655
SB-87	2.0.1100	101	7 - 6 10	0.91	469	15%	0.888	8,838	, 655
SB-89	0.0600 K	. 213	13	1.05	470	15%	0.887	. 9,152	678
SB-95	∕ - 0.0135 K	203	A 124 A 1863	.0.23	47.1	15%	0.887	9,355	693
SB-96	- 0.0125 K	589	7	× 0.61	471	15%	0.887	9,943	737
SB-97	170.0000	181	30,769	2,539:46	÷ C+3,011	97%	0.036	10,124	750
SB-98	-0.6000 K	490	294	24.25	3,035		0.028	10,614	
SB-C	0.6200	1,169	725	59.84	3,095	99%	0.008	11,783	873
SB-217	0.1200 U	380	46	3.76	3,098	99%	0.007	12,163	901
SB-106	0.0750 K	785	59	4.86	3,103	99%	0.005	12,948	959
SB-99	0.0310 I	1,266	39	3.24	3,107	100%	0.004	14,213	1,053

δ-BHC	0-2 ft bgs	-	Theis	sen Polygo	n			Excav	ation
		_		Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
1D	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	. (yd ³)
SB-206	0.0240 U	946	23	1.87	3,108	100%	0.004	15,160	1,123
SB-127	0.0230	558	13	1.06	3,109	100%	0.003	15,718	1,164
SB-92	0.0130 K	839	11	0.90	3,110	100%	0.003	16,557	1,226
SB-38	0.0125 K	1,070	13	1.10	3,111	100%	0.003	17,627	1,306
SB-25	0.0120 K	1,630	20	1.61	3,113	100%	0.002	17,627	1,306
SB-30	0.0120 K	1,313	16	1.30	3,114	100%	0.002	20,570	1,524
SB-42	0.0120 K	778	9	0.77	3,115	100%	0.001	21,348	1,581
SB-B	0.0120 K	31	0	0.03	3,115	100%	0.001	21,378	1,584
SB-139	0.0115 K	461	5	0.44	3,116	100%	0.001	21,378	1,584
SB-207	0.0090	724	7	0.54	3,116	100%	0.001	22,564	1,671
SB-141	0.0060 K	1,025	6	0.51	3,117	100%	0.001	23,588	1,747
SB-130	0.0030 U	604	2	0.15	3,117	100%	0.001	24,192	1,792
SB-32	0.0026 U	813	2	0.17	3,117	100%	0.001	25,006	1,852
SB-103	0.0025 U	1,790	4	0.37	3,117	100%	0.001	26,795	1,985
SB-211	0.0025 U	756	2	0.16	3,118	100%	0.001	27,551	2,041
SB-10	0.0024 U	1,092	3	0.22	3,118	100%	0.000	28,643	2,122
SB-19	0.0024 U	638	2	0.13	3,118	100%	0.000	29,281	2,169
SB-104	0.0024 U	2,055	. 5	0.41	3,118	100%	0.000	31,336	2,321
SB-128	0.0024 U	490	1	0.10	3,118	100%	0.000	31,826	2,357
SB-129	0.0024 U	590	1	0.12	3,119	100%	0.000	31,826	2,357
SB-185	0.0024 U	217	1	0.04	3,119	100%	0.000	32,416	2,401
SB-195	0.0024 U	524	1	0.10	3,119	100%	0.000	32,633	2,417
SB-196	0.0024 U	447	1	0.09	3,119	100%	0.000	33,157	2,456
SB-190	0.0024 U	195	0	0.04	3,119	100%	0.000	33,604	2,489
SB-202	0.0024 U	157	0	0.03	3,119	100%	0.000	33,956	2,515
SB-20	0.0024 U	616	1	0.12	3,119	100%	0.000	34,572	2,561
SB-194	0.0023 U	173	0	0.03	3,119	100%	0.000	34,572	2,561
SB-4	0.0022 U	826	2	0.15	3,119	100%	0.000	35,571	2,635
SB-8	0.0013 K	599	1	0.07	3,119	100%	0.000	35,571	2,635
ND	0.0000	0	0	0.00	3,119	100%	0.000	36,170	2,679
ND	0.0000	0	0	0.00	3,119	100%	0.000	36,170	2,679
ND	0.0000	0	0	0.00	3,119	100%	0.000	36,170	2,679
ND	0.0000	0	0.	0.00	3,119	100%	0.000	36,170	2,679
ND	0.0000	0	.0	0.00	3,119	100%	0.000	36,170	2,679
ND	0.0000	0	0	0.00	3,119	100%		36,170	2,679
Total		36,170	37,793	3,119					

AWA - Area weighted average

у-ВНС 0	-2 ft bgs			Theissen Po	lygon			Excav	ation
		[Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
No excavation		/		4,709			1.092		<u> </u>
SB-105	0.4400	463	204	- 16.82	3.50.86.17	0%	1.089	463	34
SB-107	0:0035 K	307	0.38 An. 4854	0.09	7-11-17	€ 0%	1:089 ا	770	57
SB-108	₹ 0.0180 K	392	34. 35. 34.7	0.58	17	·** 0%	1.088	∄1,161	86
SB-124	€ 10.0007€U	63	- 0	0.00	17	0%	1.088	1,224	₩ 191
SB-132	0.0990	533	53	4.36	- 22	/ 0%	1.087	* 1,757,	130
SB-133	0.1600 K	349	56	4.61	26	1%	் 1 086	2:106	156
SB-134	0.3100	162	50	4.14		1%	1.085	2,268	168
SB-135	0.1850 K	896	166	-/ 13.67	. 44	∴ }1%	1.082	3,164	234
SB-137-	0.1600 K	419	67	5.53	50	. 1%	1:081	3:582	265
SB-150	0:0140.U	: 3137	2	0.16		1%	1.081	3,719	. 275
SB-151 🐣 🔆	0:0620	154	\$25°40\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.79	∵ 51	1%	··*1.081	3,872	287
SB-152	⇒ . 0.0320 ປຸ	317	10	0.84	.52	1%	1.080	4,189	≟ €.310
SB-153	£ 0.0360 U ∶	178	11.50	0.53	52	1%	ੈ ਹੈ1.080	4;367	∲. 323
SB-16 4	5 : 0.0007 Use	90	√. O	. 0.00			1:080	4,457	* ÷ 330
SB-18	0.1200	/ 71	9	0.70	53	1%	1.080	": 4,528	335
SB-186	0.0660	⊴, 130	9	0.71	54	∴ - 1%	1.080	4,657	
SB-187	o:0007: Ù∵	110	-0	0.01		> ∴∷1%	1.080	3 . 4 ,768	353
SB-189	- 0.0007 U ु∍	154	0	0.01	. 54	1.%	//_1.080	4,922	365
SB-191	0.0240	3123	3	0.24	54	1%	1:080	5,045	374
SB-192	0.0900	110	3 10	0.81	55	1%	্∱ং1.080	5,155	382
SB-193	-∵ 0.0500 · ≰\	126	4. 6		√ € ₹55	1%	1.080	* ÷ 5,281	. 391
SB-197	₹ 0.0065 U	173	38·香港水门登1	0.09	55	. 1%	⁷ £ 1.080	5,454	₹ 404
SB-203	0.0032 U	155	3 · · · · · · · · · · · · · · · · · · ·	0.04		1%	્ર ી 1 .080	.∷	416
SB-204	:⊶ 0:0067 U;	44	0	0.02		ું ⊈ી%	1.080	ે⊹5,653	419
SB-205	0.1400	24	3	0.28	56	1%	<u>> 1.080</u>	5,678	421
SB-213	0.0006-U*	∵" 349	# 0 · 0	<u>*</u> 0.02	是是第1656	,-:":/1%	્રે ી.080	6;026	446
SB-214	0.0007 U	290	0	0.02	56	21%	1.080	6,317	468
SB-215	್ಲಿ` 0:0100 ಿೇ	273	@##JF###3g3	0.23	56	. 1%	1.079	6,590	488
SB-216	1.0000	424	424	35:02		2%	₹1.071	7,014	¥ 520
SB-218	0.2800	*852	238	19.68	P 25 (5.11)	: ₹: 2%	1.067	.,7,866	\$2 *583
SB-219 🐎 🦠	0.0007/U	292		0.02		2%	1.067	8:158	604
SB-33* (********	0.0530	- 🖅 395	第一第二21	1.73	112	2%	∄⊵1.066	8,553	634
SB-34	9 14.0000	315	4,415	364.36	477,	10%	0.982	8,868	657
SB-35 (4)	∮ 0.0335 K	202	则则则则或7	0:56	学者77.477	10%	0.982	9,070	672
SB-81	0:0007 U	<u>્રે</u> 123		0.01	477	. 10%	0.982	9,193	681
SB-82	₩ 0.0070 K 🕏	. ₹30 <u>1</u>	总管体中产2	, ∵ ∨0.17	477	10%	0.982	9.494	703
SB-86	0:0032 K∗ु		(A)	0.03	477	∴∴10%	્રે 0.982	9,590	// 710
SB-87	% 0.1400 ⊗	101	14	1.16		`≆⊈310%	· 0:981	.≥ 9,691	沙太718
SB-89	0.0170 K	- 213	4	0.30		10%	% 0.981	9,904	734
SB-95	0.0036 K	203	The Branch	· / 0.06	479	10%	0.981	10:107	7.749
SB-96	0.0034 K	589	2	0.17	. 479	ু 10%	× 0:981	; ·10,696	. 792
SB-97	280.0000	. 181	50,703		4,664	99%	0.010	10,877	<i>,,,</i> ,, 806
SB-98	0:1700 K	490	83	6.88	, 4,67,1	99%	0.009	11,367	842

γ-BHC 0	-2 ft bgs	Theissen Polygon							ation
				Mass/				,	
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft ²)	(yď³)
SB-138	0.0700	494	35	2.85	4,686	100%	0.005	13,478	998
TSB-15	0.0613 K	1,595	98	8.06	4,695	100%	0.003	15,072	1,116
SB-130	0.0480	604	29	2.39	4,697	100%	0.003	15,677	1,161
SB-217	0.0320 U	380	12	1.00	4,698	100%	0.003	16,056	1,189
SB-106	0.0205 K	785	16	1.33	4,699	100%	0.002	16,841	1,248
SB-136	0.0160 K	668	11	0.88	4,700	100%	0.002	17,509	1,297
TSB-20	0.0125 K	1,407	18	1.45	4,702	100%	0.002	18,916	1,401
SB-206	0.0066 U	947	6	0.52	4,702	100%	0.002	19,863	1,471
TSB-21	0.0063 K	1,601	10	0.83	4,703	100%	0.001	21,464	1,590
TSB-9	0.0063 K	1,440	9	0.74	4,704	100%	0.001	22,904	1,697
SB-127	0.0062	558	3	0.29	4,704	100%	0.001	23,462	1,738
SB-92	0.0035 K	839	3	. 0.24	4,704	100%	0.001	24,302	1,800
SB-38	0.0034 K	1,071	4	0.30	4,705	100%	0.001	25,372	1,879
SB-42	0.0034 K	778	3	0.22	4,705	100%	0.001	26,150	1,937
SB-B	0.0034 K	31	0	0.01	4,705	100%	0.001	26,181	1,939
SB-30	0.0033 K	1,314	4	0.36	4,705	100%	0.001	27,495	2,037
SB-C	0.0033 K	1,170	4	0.32	4,705	100%	0.001	28,665	2,123
SB-17	0.0032 K	645	2	0.17	4,706	100%	0.001	29,310	2,171
SB-140	0.0032 K	377	1	0.10	4,706	100%	0.001	29,687	2,199
SB-139	0.0032 K	461	1	0.12	4,706	100%	0.001	30,148	2,233
TSB-11	0.0025 U	1,611	4	0.33	4,706	100%	0.001	31,759	2,353
TSB-14	0.0025 K	1,466	4	0.30	4,706	100%	0.001	33,225	2,461
TSB-16	0.0025 U	1,591	4	0.33	4,707	100%	0.000	34,816	2,579
TSB-23	0.0025 U	1,594	4	0.33	4,707	100%	0.000	36,410	2,697
TSB-24	0.0025 U	1,461	4	0.30	4,707	100%	0.000	37,871	2,805
TSB-27	0.0025 K	771	2	0.16	4,708	100%	0.000	38,642	2,862
TSB-5	0.0025 K	1,916	5	0.40	4,708	100%	0.000	40,559	3,004
TSB-6	0.0025 K	1,636	4	0.34	4,708	100%	0.000	42,194	3,126
SB-4	0.0011	827	1	0.08	4,708	100%	0.000	43,021	3,187
SB-99	0.0007 U	1,266	1	0.08	4,708	100%	0.000	44,288	3,281
SB-211	0.0007 U	756	1	0.04	4,708	100%	0.000	45,044	3,337
SB-195	0.0007 U	524	0	0.03	4,709	100%	0.000	45,568	3,375
SB-10	0.0007 U	1,093	1	0.06	4,709	100%	0.000	46,661	3,456
SB-11	0.0007 U	566		0.03	4,709		0.000	47,226	
SB-185	0.0007 U	217	0	0.01	4,709	100%	0.000	47,443	
SB-196	0.0007 U	447	0	0.02	4,709	100%	0.000	47,890	3,547
SB-190	0.0007 U	195	0	0.01	4,709	100%	0.000	48,085	3,562
SB-19	0.0007 U	638	0	0.03		100%	0.000	48,723	3,609
SB-129	0.0007 U	591	0	0.03	4,709	100%	0.000	49,314	3,653
SB-202	0.0007 U	158	0	0.01	4,709	100%	0.000	49,471	3,665
SB-20	0.0007 U	616	0	0.03	4,709	100%	0.000	50,087	3,710
SB-131	0.0006 U	642	0	0.03		100%	0.000	50,729	3,758
SB-194	0.0006 U	173	0	0.01	4,709	100%	0.000	50,902	3,771
SB-207	0.0006 U	724	0	0.04	4,709	100%	0.000	51,627	3,824
SB-8	0.0004 K	599	0	0.02	4,709	100%	0.000	52,225	3,869

у-ВНС)-2 ft bgs			Theissen Po	lygon			Excav	ation
Soil Sample ID	Concentration (mg/kg)	Area	Weighted Area (ft ² -mg/kg)	Mass/ polygon (grams)	Total Mass (grams)	% mass	AWA (mg/kg)	Area	Volume (yd ³)
ND	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND_	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND _	0.0000	0	0	0.00	4,709	100%	0.000	52,225	3,869
ND	0.0000	0	0	0.00	4,709	100%		52,225	3,869
Total		52,225	57,053	4,709					

AWA - Area weighted average

Toxaphei	ne 0-2 ft bgs	-	1	heissen Pol	ygon			Exca	vation
				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID I	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
No Excavation			, , , , , , , , , , , , , , , , , , ,	223,632			36.97	\/_	/
SB-105	1.30 K	√463	602	49.67			: 36.96	463	34
SB-107	6:00 1	307	1,839	151.79	201	0%	36.94	769	57
SB-108	7.00 K ±	₹391	2,739	226.10	428		36.90	1,161	86
SB-12	0.25 U	63	16	1.31	429	0%	36.90	×1,224	10 € 91
SB-132	26.00	533	13,857	1;143.70	1,573	1%	36.71	1,757	27, 130
SB-133	€ 60:00 K	349	20,919	1,726.52	3,299	1.%	36.42	2,105	156
SB-134	79.00	162	12,773	1,054.21	4,353	2%	36.25	2,267	168
SB-135	70:00 K	895	62,654	5,171.12	9,524	4%	35.40	3,162	234
SB-137	60'00 K	418	25,099	2,071.52	11,596	5%	35.05	3,580	265
SB-150	5.20 U	136	710	58.57	11,655	5%	35.04	3,7,17,	275
SB4151 155	2,700.00	153	414,277	*34,191.92	45,846	21%	29.39	3,870	
SB-152	5.00 U	. 317	1,585	130.83	45,977	·: 21%	29.37	4,187	· 310
SB-153	14.00 U	.178	2,487	205:28	46,183	21%	29.34	4,365	323
SB-16- 🐴 🛬	150	ું ⊧ુે 90	人类学家文学会135	经验证的证据	46,194	3. 21%	: 29.33	4 455	ેંું 330
SB-18	57.00	71	4,049	334:21	346 ;528	21%	29.28		335
SB-187	11 00	110	1:212	100.03	46,628	21% يىنى	29.26	4,636	343
SB-188	0.28 U	142	设施主线40	. 3.28	46,631	21%	29.26	4,778	354
SB-189 📆 📆	- * 0.26 U-}	: ₹35 4	40	3:31	46,634	21%	€ 29 26	∱∳4;932	365
SB-191	'2.7 U.€	123	31	2.54	46,637	21%	.₹ 29 .26	5,055	374
SB-192 🛸	31.00	, 1 ₉ 10	3,397	280:34	46,917	21%	29.21	5,165	383
SB+193:	2.70	126	341	28:16	46,946	21%	29.21	5,291	: 392
SB-197, 🧠 🤭	2.50 U	173	431	35.60	46,981	"21%	·>29:20	5,464	405
SB-199	0.28 U	164		3.78	.46,985	21%	29.20	5,627	417
SB-204	2.60 U	44	114	9.45	46,994	21%	29:20	5,67,1	* 420
SB-205	2.60 U	24		5:22	47,000	21%	29:20	5,696	422
SB-212	1.70	299	508	41:90	47,041		29:19	5,994	444
SB-215	0:24 U	273	65	5:40	47,047	. 21%	- 29:19	6,267	464
SB-216	1,600.00	424	678,652	56;011:89	103,059	46%	19.93	6,691	3, 496
SB-218	2.50 U	*	2,128	175.61	:,103,234	46%	:19.90	7,542	559
SB-219	0.25,U≝	292	分别,从为73	6.02	103,240	46%	19.90	7,834	580
SB-33	0.26 K	395	103	8.47	103,249	46%	:19.90	≈8,229	::::610
SB-34	380.00	315	119,767	9,884.86	113,134	51%	.18:27	€8,544	633
SB-81	0.27 U		1979 * 1974 33		113,353				
SB-82	2.60 K		782		113,418				
SB-86 W	1.20 K		116					9,266	
SB-87	1.30 K.	101	131					9,366	
SB-89	400.00	213	85,092		120,461	54%		# ₹9,579	
SB-95		203	284		120,484	54%		9,782	
SB-96	1:30 K		765		120,547	54%	17.04		768
SB-97		2°≈ 181	1,031,654		205,694	92%	. 2.97		
SB-98		490	(*).45° (*.31;835		208,322	93%	2.53	11(041)	
TSB-10	30.00	1,616	48,481	4,001.33	212,323	95%	1.87	12,658	
SB-127	25.00	558	13,948	1,151.20	213,474	95%	1.68	13,215	979

Toxapher	ne 0-2 ft bgs			heissen Pol	ygon	·		Exca	/ation
-	····			Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
TSB-27	22.00	771	16,960	1,399.80	214,874	96%	1.45	13,986	1,036
SB-136	19.00 1	667	12,677	1,046.28	215,920	97%	1.27	14,654	1,085
TSB-9	14.00	1,439	20,146	1,662.73	217,583	97%	1.00	16,093	1,192
SB-217	12.00 U	380	4,555	375.98	217,959	97%	0.94	16,472	1,220
SB-42	12.00	778	9,332	770.21	218,729	98%	0.81	17,250	1,278
SB-106	8.00 K	785	6,277	518.04	219,247	98%	0.72	18,034	1,336
SB-17	6.50	645	4,192	345.99	219,593	98%	0.67	18,679	1,384
TSB-15	6.25 K	1,594	9,962	822.21	220,415	99%	0.53	20,273	1,502
SB-143	6.00 K	879	5,272	435.13	220,850	99%	0.46	21,152	1,567
SB-58	5.90	113	667	55.07	220,906	99%	0.45	21,265	1,575
SB-38	3.70 I	1,070	3,959	326.78	221,232	99%	0.40	22,335	1,654
SB-142	3.20 I	421	1,347	111.20	221,344	99%	0.38	22,756	1,686
SB-198	3.00	160	480	39.63	221,383	99%	0.37	22,916	1,698
SB-190	2.90	195	565	46.63	221,430	99%	0.36	23,111	1,712
SB-201	2.70 U	138	373	30.80	221,461	99%	0.36	23,249	1,722
SB-208	2.40 U	184	441	36.39	221,497	99%	0.35	23,433	1,736
SB-101	2.30	1,807	4,156	343.02	221,840	99%	0.30	25,240	₋ 1,870
SB-4	1.80	826	1,487	122.75	221,963	99%	0.28	26,066	1,931
SB-92	1.35 K	839	1,133	93.48	222,056	99%	0.26	26,905	1,993
SB-93	1.30 K	501	652	53.79	222,110	99%	0.25	27,407	2,030
SB-B	1.30 K	31	40	3.28	222,113	99%	0.25	27,437	2,032
SB-C	1.25 K	1,169	1,462	120.64	222,234	99%	0.23	28,607	2,119
TSB-20	1.25 K	1,407	1,758	145.12	222,379	99%	0.21	30,013	2,223
SB-138	1.20 K	494	592	48.90	222,428	99%	0.20	30,507	2,260
SB-8	1.20	599	718	59.28	222,487	99%	0.19	31,106	2,304
SB-140	1.20 K	377	452	37.33	222,525	100%	0.18	31,482	2,332
SB-139	1.20 K	461	553	45.66	222,570	100%	0.18	31,943	2,366
SB-37	0.78 1	1,040	811	66.94	222,637	100%	0.16	32,983	2,443
SB-200	0.75	203	152	12.57	222,650	100%	0.16	33,186	2,458
SB-210	0.63	144	91	7.47	222,657	100%	0.16	33,330	2,469
TSB-21	0.63	1,600	1,000	82.55	222,740	100%	0.15	34,930	2,587
TSB-25	0.63 K	1,329	831	68.55	222,808	100%	0.14	36,259	2,686
SB-141	0.60 K	1,025	615	50.76	222,859	100%	0.13	37,284	2,762
SB-194	0.43	173	74	6.14	222,865	100%	0.13	37,457	2,775
SB-130	_0.32 U	604	193	15.95	222,881	100%	0.12	38,061	2,819
SB-178	0.32 U	2,795	894	73.82	222,955	100%	0.11	40,856	3,026
SB-40	0.28 I	715	200	16.52	222,971	100%	0.11	41,571	3,079
SB-102	0.27 U	810	219	18.06	222,990	100%	0.11	42,381	3,139
SB-32	0.27 U	813	220	18.13	223,008	100%	0.10	43,195	3,200
SB-179	0.27 U	756	204	16.84	223,025	100%	0.10	43,951	3,256
SB-39	0.27 U	387	105	8.63	223,033	100%	0.10	44,338	3,284
SB-P	0.26 ป	210	55	4.51	223,038	100%	0.10	44,548	3,300
SB-100	0.26 U	1,220	317	26.17	223,064	100%	0.09	45,768	3,390
SB-109	0.26 U	979	255	21.01	223,085	100%	0.09	46,747	3,463
SB-209	0.26 U	256	67	5.50	223,090	100%	0.09	47,003	3,482

Toxapher	ne 0-2 ft bgs		T	heissen Pol	ygon			Excavation		
				Mass/				-		
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume	
ID	(mg/kg)	_(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)	
SB-211	0.26 U	756	197	16.22	223,107	100%	0.09	47,759	3,538	
SB-10	0.25 U	1,092	276	22.80	223,129	100%	0.08	48,851	3,619	
SB-19	0.25 U	638	159	13.16	223,143	100%	0.08	49,488	3,666	
SB-27	0.25 U	. 881	220	18.19	223,161	100%	0.08	50,370	3,731	
TSB-18	0.25 U	1,235	309	25.49	223,186	100%	0.07	51,605	3,823	
SB-126	0.25 U	727	182	14.99	223,201	100%	0.07	52,332	3,876	
SB-128	0.25 U	490	122	10.11	223,211	100%	0.07	52,822	3,913	
SB-129	0.25 U	590	148	12.18	223,223	100%	0.07	53,412	3,956	
SB-185	0.25 U	217	54	4.47	223,228	100%	0.07	53,628	3,972	
SB-90	0.25 U	452	113	9.33	223,237	100%	0.07	54,080	4,006	
TSB-11	0.25 U	1,610	403	33.23	223,271	100%	0.06	55,691	4,125	
TSB-14	0.25 K	1,465	366	30.22	223,301	100%	0.05	57,156	4,234	
TSB-16	0.25 U	1,590	398	32.81	223,334	100%	0.05	58,746	4,352	
TSB-19	0.25 U	1,609	402	33.21	223,367	100%	0.04	60,355	4,471	
TSB-22	0.25 U	1,278	320	26.37	223,393	100%	0.04	61,634	4,565	
TSB-23	0.25 U	1,593	398	32.87	223,426	100%	0.03	63,227	4,683	
TSB-24	0.25 U	1,460	365	30.13	223,456	100%	0.03	_ 64,687	4,792	
TSB-28	0.25 U	1,910	477	39.41	223,496	100%	0.02	66,597	4,933	
TSB-5	0.25 K	1,915	479	39.52	223,535	100%	0.02	68,512	5,075	
TSB-6	0.25 K	1,635	409	33.73	223,569	100%	0.01	70,147	5,196	
SB-202	0.25 U	157	39	3.25	223,572	100%	0.01	70,305	5,208	
SB-20	0.25 U	616	154	12.70	223,585	100%	0.01	70,920	5,253	
SB-131	0.24 U	641	154	12.70	223,597	100%	0.01	71,562	5,301	
SB-22	0.24 U	977	234	19.34	223,617	100%	0.00	72,538	5,373	
SB-36	0.24 U	752	181	14.90	223,632	100%	0.00	73,291	5,429	
ND	0.00	0	0	0.00	223,632	100%	0.00	73,291	5,429	
ND	0.00	. 0	0	0.00	223,632	100%	0.00	73,291	5,429	
ND	0.00	. 0	0	0.00	223,632	100%	0.00	73,291	5,429	
ND	0.00	0	0	0.00	223,632	100%	0.00	73,291	5,429	
ND	0.00	0	0	0.00	223,632	100%	36.97	73,291	5,429	
ND	0.00	0	0	0.00	223,632	100%		73,291	5,429	
Total		73,291	2,709,570	223,632						

AWA - Area weighted average

Chlorda	ne 0-2 ft bgs	<u> </u>	Theis	sen Polygoi	n		-	Exca	/ation
		†	1	Mass/	Ī	f			
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID.	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
No Excavation		1 (11)	(it -ing/kg)	319,542	(9.4)		36.41	(11)	()0)
SB-105 and	13.700	463	6,342	36523	523	~ 7 0%	36.35	463	- 34
SB-107	10.000	307	3,065	253	776	:0%	36.32	769	57.0
SB-108	36.000	391	14,089	1,163	1,939	1%	÷36.19	1.161	- 86
SB-12	0.480	65	31	3	1 942	1%	36.19	1 226	91
SB-132	2.600	5. 533	1.386	114	2,056	1%	36.18	1,759	130
SB-133	480.000	349	167,352	13,812	15,868	5%	34.60	2108	156
SB-134	20.000	Jan 162	3,234	. 267.	16,135	5% 5%	34.57	2,269	168
SB-135	59.000	895	52,809	4,359	20,494	6%	34.07	3,165	234
SB-137	6 100 000	418	2,551,802	210,610	231,104	72%	10.08	3,583	265
SB-150	8.000=	136	1,092	2,0,010	231,194	72%	10.07	3,719	<i>32</i> 276
SB-151	0.640	5 153	98		231,203	72%	10.07	3,873	287
SB-152	99.000	317	·31,386	2,590	233,793	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9.77	4.190	310
SB-153	100.000	178	17,765	1,466	235.259	74%	9.60	4:367	324
SB-16	0.570	. 99	56	/5	235,264	74%	9.60	4 466	331
SB-18	15.100	71	1,073		235,352	74%	. 9.59	4,537	336
SB-186	1.800	129	233	19	235,372	. 74%	9.59	4 667	346
SB-187	2.700	110	297	25	235,396	74%	9.59	4777	354
SB-188	0.079	142	11	1	235,397	74%	9.59	4,919	364
SB-189	0.023	154	4		235,397	74%	9.59	5,073	376
SB-191	0.058	123	(3) 8 C 17 5 37	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	235,398	74%	9.59	5.196	385
SB-192	5.800	110	635	52	235,450	74%	9.58	:5,306	393
SB-193.	0.270	108	29	. 2	235,453	-74%	9.58	5,414	401
SB-197	2.400	173	414	34	235,487	74%	9.58	5,587	414
SB-199	0.026	164	4	· ' · · · O	235,487	74%	9.58	5,750	426
SB-212*	0.330	299	99	. 8	235,496	74%	19:58	6.049	1 448
SB-213	0.390	356	139		235,507	* 74%	9.58	6.405	474
SB-215	0.016	273	4	0	235,507	74%	9.58	6,678	495
SB-216	87.000	420	36,527	3,015	238,522	75%	9.23	7.097	526
SB-218	3.700	853	3,156	260	238,783	75%	∵ 9.20	7,950	589
SB-219	0.150	292	44	17 45 A 4	238,786	75%	9.20	8,242	611
SB-28		1,045	102		238,795		9.20	9,287	688
SB-33	0.390	395	. 154	13	238,807	75%	9.20	9,682	717
SB-34	69.000		21,747	1.795		75%	8.99	9,997	741
SB-35			565,144		287,246			10,199	
SB-47:	7.000							11,216	
SB-82 3	17.800	301	∜,5,354	442	288,275			11,517	853
SB-86		- 96	. 84	C-207	288,282			11,613	860
SB-89		213	20,422	1,685	289,968			11,826	* 876
SB-957	14.600	5 203	2,963	~ 245	290,212			12,029	. 891
SB-96	11/400	589	6,710	554	290,766			12,618	935
SB-97	0.850	181	154	13	290,779			12,799	948
SB-98	410.000	490	200,810	16,574	307,352			5 13,288	984
SB-C	22.000	1,169	25,726	2,123	309,476	97%	1.15	14,458	1,071
SB-42	16.500	778	12,832	1,059		97.2%			1,129
~~ ~~	10.000	,,0	12,002	1,000	0.0,000	J Z /0	3	.0,200	-,,.20

Chlordan	e 0-2 ft bgs		Theis	sen Polygor				Exca	ation
				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID .	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
TSB-9	14.800	1,439	21,297	1,758	312,292	98%	0.83	16,674	1,235
SB-B	14.000	31	428	35	312,328	97.7%	0.82	16,705	1,237
SB-131	12.400	641	7,952	656	312,984	98%	0.75	17,346	1,285
SB-130	11.600	604	7,006	578	313,562	98%	0.68	17,950	1,330
SB-136	8.700	667	5,805	479	314,041	98%	0.63	18,617	1,379
SB-127	7.100	558	3,961	327	314,368	98%	0.59	19,175	1,420
TSB-27	6.300	771	4,857	401	314,769	99%	0.54	19,946	1,478
SB-14	4.800	1,873	8,992	742	315,511	99%	0.46	21,819	1,616
SB-128	4.600	490	2,254	186	315,697	99%	0.44	22,309	1,653
SB-138	4.200	494	2,074	171	315,868	99%	0.42	22,803	1,689
SB-48	4.100	1,738	7,128	588	316,457	99.0%	0.35	24,542	1,818
SB-106	3.600	785	2,824	233	316,690	99%	0.33	25,326	1,876
SB-38	2.800	1,070	2,996	247	316,937	99%	0.30	26,396	1,955
SB-30	2.600	1,313	3,414	282	317,219	99%	0.26	27,709	2,053
SB-93	2.600	501	1,303	108	317,326	99.3%	0.25	28,211	2,090
SB-92	2.200	839	1,846	152	317,479	99%	0.24	29,050	2,152
SB-17	2.080	645	1,341	111	.317,589	99%	0.22	29,695	2,200
SB-129	1.730	590	1,021	. 84	317,674	99%	0.21	30,285	2,243
SB-198	1.400	160	224	18	317,692	99%	0.21	30,445	2,255
SB-209	1.400	256	359	30	317,722	99%	0.21	30,701	2,274
SB-5	1.310	720	943	78	317,800	99.5%	0.20	31,420	2,327
SB-206	1.300	946	1,230	102	317,901	99%	0.19	32,367	2,398
SB-201	1.200	138	166	14	317,915	99%	0.19	32,505	2,408
SB-143	1.110	879	975	80	317,995	100%	0.18	33,384	2,473
TSB-11	1.000	1,610	1,610	133	318,128	100%	0.16	34,994	2,592
SB-58	0.990	113	112	9	318,137	. 99.6%	0.16	35,107	2,601
TSB-1	0.980	1,723	1,688	139	318,277	100%	0.14	36,830	2,728
SB-217	0.860	380	326	27	318,304	100%	0.14	37,210	2,756
SB-126	0.790	727	574	47	318,351	100%	0.14	37,937	2,810
TSB-28	0.740	1,910	1,413	117	318,468	100%	0.12	39,846	2,952
TSB-17	0.590	2,127	1,255	104	318,571	100%	0.11	41,973	3,109
SB-208	0.580	184	107	9	318,580	100%	0.11	42,157	3,123
SB-139	0.570	461	263	22	318,602	100%	0.11	42,618	3,157
SB-20	0.550	616	339	28	318,630	100%		43,233	3,202
SB-102	0.540	810	438	36	318,666	100%	0.10	44,044	3,262
TSB-29	0.530	1,946	1,031	85	318,751	100%	0.09	45,990	3,407
SB-36	0.480	752	361	30	318,781	100%	0.09	46,742	3,462
SB-140	0.450	377	170	14	318,795	100%	0.09	47,119	3,490
SB-190	0.450	195	. 88	7	318,802	100%	0.08	47,314	3,505
TSB-25	0.440	1,329	585	48	318,850	100%	0.08	48,643	3,603
TSB-2	0.430	2,184	939	78	318,928	100%	0.07	50,827	3,765
TSB-22	0.400	1,278	511	42	318,970	100%	0.07	52,105	3,860
SB-99	0.390	1,266	494	41	319,011	99.8%	0.06	53,371	3,953
TSB-6	0.370	1,635	605	50	319,061	100%	0.05	55,006	4,074
SB-207	0.320	724	232	19	319,080	100%	0.05	55,730	4,128

Chlordan	e 0-2 ft bgs		Theis	sen Polygor	 1		-	Excavation		
	, C .			Mass/						
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume	
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)	
SB-25	0.290	1,630	473	39	319,119	100%	0.05	57,360	4,249	
SB-104	0.290	2,055	596	49	319,168	100%	0.04	59,415	4,401	
SB-141	0.290	1,025	297	25	319,193	100%	0.04	60,440	4,477	
TSB-23	0.290	1,593	462	38	319,231	100%	0.04	62,033	4,595	
SB-88	0.277	2,064	572	47	319,278	99.9%	0.03	64,097	4,748	
SB-P	0.270	210	57	5	319,283	100%	0.03	64,307	4,764	
TSB-26	0.216	899	194	16	319,299	100%	0.03	65,207	4,830	
TSB-12	0.210	1,328	279	23	319,322	100%	0.03	66,535	4,929	
SB-37	0.209	1,040	217	18	319,340	100%	0.02	67,575	5,006	
SB-8	0.205	599	123	10	319,350	100%	0.02	68,173	5,050	
SB-142	0.190	421	80	7	319,356	100%	0.02	68,594	5,081	
TSB-5	0.190	1,915	364	30	319,386	100%	0.02	70,510	5,223	
SB-3	0.189	643	121	10	319,396	100%	0.02	71,152	5,271	
TSB-20	0.186	1,407	262	22	319,418	100%	0.01	72,559	5,375	
SB-40	0.167	715	119	10	319,428	100%	0.01	73,273	5,428	
SB-15	0.162	174	28	2	319,430	100%	0.01	73,447	5,441	
TSB-7	0.124	973	121	10	319,440	100%	0.01	74,420	5,513	
TSB-14	0.123	1,465	180	15	319,455	100%	0.01	75,885	5,621	
SB-200	0.120	203	24	2	319,457	100%	0.01	76,088	5,636	
SB-210	0.100	144	14	1	319,458	100%	0.01	76,232	5,647	
SB-4	0.092	826	76	6	319,464	100%	0.01	77,058	5,708	
TSB-8	0.091	263	24	2	319,466	100%	0.01	77,321	5,728	
SB-10	0.090	1,092	98	8	319,475	100%	0.01	78,413	5,808	
SB-39	0.074	387	29	2	319,477	100%	0.01	78,801	5,837	
SB-196	0.064	447	29	2	319,479	100%	0.01	79,248	5,870	
SB-32	0.059	813	48	4	319,483	100%	0.01	80,061	5,930	
SB-23	0.059	1,507	89	7	319,491	100%	0.01	81,568	6,042	
TSB-3	0.057	2,133	122	10	319,501	100%	0.00	83,702	6,200	
TSB-10	0.056	1,616	90	7	319,508	100%	0.00	85,318	6,320	
SB-202	0.055	157	9	1	319,509	100%	0.00	85,475	6,331	
TSB-31	0.050	2,099	105	9	319,517	100%	0.00	87,574	6,487	
SB-109	0.045	979	44	4	319,521	100%	0.00	88,553	6,559	
SB-19	0.042	638	27	2	319,523	100%	0.00	89,191	6,607	
SB-90	0.042	452	19	2	319,525	100.0%	0.00	89,643	6,640	
SB-194	0.041	173	7	1	319,525	100%	0.00	89,816	6,653	
SB-211	0.034	756	26	2	319,528	100%	0.00	90,572	6,709	
SB-27	0.029	881	26	2	319,530	100%	0.00	91,453	6,774	
SB-11	0.021	532	11	1	319,531	100%	0.00	91,985	6,814	
SB-195	0.021	524	11	1	319,531	100%	0.00	92,510	6,853	
TSB-19	0.021	1,609	33	3	319,534	100%	0.00	94,119	6,972	
TSB-24	0.017	1,460	25	2	319,536	100%	0.00	95,579	7,080	
SB-2	0.017	626	10	1	319,537	100%	0.00	96,205	7,126	
SB-1	0.015	598	9	1	319,538	100%	0.00	96,803	7,171	
SB-180	0.012	148	2	0	319,538	100%	0.00	96,951	7,182	
TSB-21	0.012	1,600	18	2	319,540	100%	0.00	98,552	7,300	

Chlordan	e 0-2 ft bgs		Theis	sen Polygor	i			Exca	ation
Soil Sample	Concentration (mg/kg)	Area	Weighted Area (ft²-mg/kg)	Mass/ polygon (grams)	Total Mass (grams)	% mass	AWA (mg/kg)	Area (ft²)	Volume (yd ³)
SB-179	0.006	756	5	0	319,540	100%	0.00	99,308	7,356
SB-182	0.006	242	1	0	319,540	100%	0.00	99,549	7,374
SB-178	0.006	2,795	15	1	319,541	100%	0.00	102,344	7,581
SB-183	0.006	434	2	0	319,541	100%	0.00	102,778	7,613
TSB-16	0.004	1,590	6	0	319,542	100%	0.00	104,368	7,731
TSB-30	0.003	1,967	6	0	319,542	100%	0.00	106,335	7,877
ND	0.000	0	. 0	0	319,542	100%	0.00	106,335	7,877
ND	0.000	0	0	0	319,542	100%	0.00	106,335	7,877
ND	0.000	0	0	0	319,542	100%	0.00	106,335	7,877
ND	0.000	0	0	0	319,542	100%	0.00	106,335	7,877
ND	0.000	0	\ 0	0	319,542	100%		106,335	7,877
Total		106,335	3,522,984	319,542					

AWA - Area weighted average

	2-5 ft bgs		Theis	sen Polygo	ก			Exca	/ation
	4			Mass/	ſ	ŀ			
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft ²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
No excavation				1,653			0.384		
SB-105	ั~ 0.0035 ป	451	是一个一个	0.19	0%会。少会	′ ેેટ0%	× 0:384	->∹\$451	50
SB-107	0.0165-K	307	39 . 表示是 5	0.62	T	- 0%	0.384	758	· * * 84
SB-12	0.0760	: ::69	5	0.64	3000	√	0.384	826	92
SB-137	∴ 0.0155 K ¾	418	.6	0.80	2 2	0%	0.384	1,245	138
SB-150	45.0000	97	4,377	540.43	543	33%	0.258	51,342	149
SB-151	1.5000	32-148	第 221	27.32	570	34%	0.252	1,490	166
SB-152	0.1600 U	* 317	51	6.26	576	35%	0.250	1,807	201
SB-153	1.6000	3. 244	390 کا چاپ	48.19	624	38%	∴:0.239	2,051	े ं228
SB-154	10:0000	215	2,148	265 17	#890	54%	0.177	∕÷,2,265	′∴ - 1252
SB-186	0.4600	129	沙山 、沙河60	形型元7:35	897	. ↑ 54%	0.176	2,395	.∕-÷ 266
SB-187	0.0350	√_;110	4	0.48	. 897	54%	0:176	2,505	278
SB-188 🛴 🛠	0.1400	141	. 20	2.44	900	54%	0.175	2,646	. 294
SB-189	1.7000	154	262	32.32	:: 932	· 56%	0.167	2,800	311
SB-191	0.0039	្ញុំ 132	18. 2 2 2 2 2 1 1	0.06	932	56%	0:167	2,932	326
SB-192	0.0032	§ - 110	(A) 0	≠ 1.₹ 0.04	932	⇒ 56%	- i 0.167	3,041	338
SB-193	0.0150	128	2	0.24	933	<i>-</i> ∴56%	0.167	/3,169	5352
SB-197	0:0360	173	6	0.77	933	56%	0.167	3,341	371
SB-199	0.0700	164	型型人类变11	1.41	935	57%	0.167	∴ 3,505	389
SB-203	0.0031	∳ ≨155	(a) 10 (b) 10 (c) 10 (c	0.06	∴ ``` 935	57%	0:167	3,660	407
SB-204	0.0038	<u>≱</u> ∜: 170		0.08	935	57%	.,. 0.167	3,830	426
SB-205	0.7100	168	第2、5章 119	14.72	/ 950	- ∑57%	.	3,998	117 444
SB-212	0.0036	∌ - 216	然。 2.	2. 0.10	ි් ් <u>ී</u> 950	: 57%	07163	··· 4,215	468
SB-213	0.0032	349	230 C. C.	0.14	950	57%	0.163	4,563	507
SB-216	'0'0083	+ 424	3. 13. 1 A 1 A 1 A	0.43	950	57%	0:163	4,987	554
SB-218	0.0032	849	63% à 182 GE 3	0.34	951	58%	0.163	···>5,836	. 648
SB-219	0.0032	314	建筑工程等1	0.12	951	58%	0:163	6,150	683
SB-28	0.1100/1	685	75	9.30	960	58%	0.161	6,835	759
SB-29	0.0165 K	540	· (4)	1.10	961	- 58%	0.161	7,375	¹ ⁄-₹819
SB-31	0.3600	548	197	24.34	985	60%	0.155	7,923	£880
SB 33	0.0175 K	395	维学公共实了	0.85	986	60%	.0:155	:8:318	924 ء
SB-83	2.2000	326	716	88.43	1,075	65%	0.134	8,643	960
SB-95	31.0000		2,701	333:42	1,408	85%	0.057	8,730	970
SB-97	3.6000	182	655	80.86	1,489	90%	0:038	- 8,912	. ₹990
SB-98			443				0:025	9,355	1,039
SB-27	1.4000	315	440	54.37	1,598	97%	0.013		
SB-8	0.2500	522	131	16.12	1,614	98%	0.009		
SB-108	0.1200	379	45	5.61	1,620	98%	0.008		
SB-30	0.0950 K	802	76	9.40	1,629		0.006		
SB-84	0.0800 K	466	37	4.60	1,634	99%	0.004	11,838	
SB-201	0.0700	137	10	1.19	1,635	99%	0.004	11,975	
SB-202	0.0380	157	6	0.74	1,636	99%	0.004	12,133	
SB-200	0.0320	187	6	0.74	1,636	99%	0.004	12,320	1,369
SB-13	0.0319 K	571	18	2.25	1,639	99%	0.003		1,432
SB-32	0.0220	581	13	1.58	1,640		0.003		

«-BHC	2-5 ft bgs		Theissen Polygon						
<u>u-Bi10</u>	2-0 it bys		THOIS	Mass/	··	r		Excav	41071
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft ²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-26	0.0160 K	87	1	0.17	1,640	99%	0.003	13,559	1,507
SB-93	0.0160 K	576	9	1.14	1,642	99%	0.003	14,135	1,571
SB-109	0.0160 K	1,071	17	2.12	1,644	99%	0.002	15,206	1,690
SB-135	0.0155 K	338	5	0.65	1,644	99%	0.002	15,545	1,727
SB-139	0.0075 K	461	3	0.43	1,645	100%	0.002	16,006	1,778
SB-190	0.0073	195	1	0.18	1,645	100%	0.002	16,200	1,800
SB-106	0.0045 I	785	4	0.44	1,645	100%	0.002	16,985	1,887
SB-35	0.0041	406	2	0.21	1,646	100%	0.002	17,391	1,932
SB-211	0.0038	287	1	0.13	1,646	100%	0.002	17,678	1,964
SB-34	0.0038 1	365	1	0.17	1,646	100%	0.002	18,043	2,005
SB-194	0.0038	181	1	0.09	1,646	100%	0.002	18,224	2,025
SB-10	0.0038 U	865	3	0.40	1,646	100%	0.002	19,089	2,121
SB-85	0.0035 U	315	1	0.14	1,647	100%	0.001	19,404	2,156
SB-99	0.0035 U	1,266	4	0.55	1,647	100%	0.001	20,670	2,297
SB-101	0.0035 U	2,503	9	1.08	1,648	100%	0.001	23,173	2,575
SB-206	0.0034	946	3	0.40	1,649	100%	0.001	24,120	2,680
SB-195	0.0034	801	3	0.34	1,649	100%	0.001	24,920	2,769
SB-196	0.0034	447	2	0.19	1,649	100%	0.001	25,367	2,819
SB-198	0.0034	160	1	0.07	1,649	100%	0.001	25,527	2,836
SB-103	0.0034 U	1,790	6	0.75	1,650	100%	0.001	27,317	3,035
SB-207	0.0033	724	2	0.30	1,650	100%	0.001	28,041	3,116
SB-208	0.0033	303	1	0.12	1,650	100%	0.001	28,344	3,149
SB-58	0.0033 U	44	0	0.02	1,650	100%	0.001	28,388	3,154
SB-92	0.0033 U	831	3	0.34	1,651	100%	0.001	29,219	3,247
SB-B	0.0033 U	31	0	0.01	1,651	100%	0.001	29,249	3,250
SB-100	0.0033 U	1,220	4	0.50	1,651	100%	0.000	30,469	3,385
SB-185	0.0033	270	1	0.11	1,651	100%	0.000	30,739	3,415
SB-132	0.0032 1	539	2	0.21	1,652	100%	0.000	31,279	3,475
SB-21	0.0031 U	1,123	3	0.43	1,652	100%	0.000	32,402	3,600
SB-96	0.0031 U	618	2	0.24	1,652	100%	0.000	33,020	3,669
SB-20	0.0031	616	2	0.24	1,652	100%	0.000	33,635	3,737
SB-133	0.0030 U	371	1	0.14	1,653	100%	0.000	34,006	3,778
SB-134	0.0030 U	185	1	0.07	1,653	100%	0.000	34,191	3,799
SB-136	0.0030 U	667	2	0.25	1,653		0.000	34,858	ĺ
ND	0.0000	. 0		0.00	1,653	100%	0.000	34,858	3,873
ND	0.0000	0	0	0.00	1,653		0.000	34,858	
ND	0.0000	. 0	0	0.00	1,653	100%	0.000	34,858	3,873
ND	0.0000	0	0	0.00	1,653	100%	0.000	34,858	
ND	0.0000	0	0	0.00	1,653	100%		34,858	3,873
Total		34,858	13,388	1,653					

AWA - Area weighted average

β-ВНС	2-5 ft bgs	,	Theis	sen Polygo	วก		,	Exca	vation
				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA /	Area	Volume
ID	(mg/kg)	(ft ²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
No excavation				1,246			0.142		
SB-105	0.0190		上海流流 19	√√.1.06	學生活變多1	0.1%	0:142	451	50
SB-107	0:0100; K	307	21 2 3 3	÷	12 12 21	0.1%	0.142	758	- 84
SB-12 包含	0.3900	. 69	27	€ ⊈′3.30	\$ 5	€ 70.4%	0.142	826	92
SB-137	0.0095 ₂ K	~~~418	- A	0.49	电影 图示5	0.4%	0.142	:1;245	138
SB-150	5-14.0000	97	1,362	168:13	173	13.9%	,0.122	, 1,342	149
SB-151	1.6000	148		429.14	203	<u></u> 16.3%	0.119	1,490	166
SB-152	0.6600	<i>॒</i> ;_317.	209	25.83	228	18:3%	0.116	1,807	<i>े</i> 201
SB-153	1 8000	. 244	439	54.22	283	22.7%	2.0.110	.,, 2,051	228
SB-154	14:0000	215	3,007	37.1.24	654	÷52.5%	0.068	2,265	252
SB-186	0.2000	્રે, ∄ 129	26	3.20	657	52.7%	0.067	2,395	. 266
SB-187	0:3100	3	经验证 信息34	4.22	. 661	ेर्53.1%	0.067	2,505	278
SB-188	.0.0020 U(,	141		0.03	661	., 53.1%	0.067	2,646	294
SB ² 189	3 0.0200 U	<i>∴</i> ે154	3 100 5/3	. 0.38	662	. 53:1%	. 0.067	. ∞/2,800	ं, (',31,1
SB-191	1.1000	<i>:</i> 132	: 145	17.87	679	54.6%	∴ 0.065	2;932	326
SB-192	0:1900, 📜	.∜:°110	21	2:57	682	54.8%	0.064	3,041	338
SB-193	0.0900	ેં 128	F-554-335-41	1.42	683	54.9%	0.064	3,,169	352
SB-197	0.0640	:::° 173	T 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.36	685	55.0%	0.064	3,341	37.1
SB-199	0.0022-U	164	0	0.04	685	55.0%	0.064	3,505	389
SB-203	0.1100	 _155	24.55 \QUAT	2.11	687	55.2%	.0.064	3,660	407
SB-204	1:1000	170	\$ \\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	23.08	710	57.0%	. ★ 0.061	:- 3,830	426
SB-205	1.9000	ે 168	319	39.39	্_ ∵749	.60.2%	0.057	3,998	444
SB-212/x	0.0022 Ú	216		-0.06	750	60.2%	0:057	4,215	468
SB-213 19 19	0.1300	349	45	5.59	755	60.6%	0.056	:4,563	507
SB-214	0.1700	293	50	6.15	, 761	61-1%	0.055	4,856	540
SB-215	0.0810	- 283	23	2.83	764	61:3%	0:055	5,139	∴∴57.1
SB-216	0.6700	424	284	35.09	799	64.2%	0.051	5,563	. 1618
SB-218 % ∵	0.1200	849	102	12.58	\$ 6 812	65:2%	0.050	6,412	7.12
SB-219	-0.0620	314	19	2.40	814	65.4%	√∷,0.049	. 6,726	.2747
SB-28	0.2400	. 685	164	20.30	834	67.0%	0.047	7.411	
SB-29.	0.01001K	540	会设计2 5	. 0.67		∴ 67.0%	∴ 0.047	7,951	
SB-31	0.0100 K	548	5.5	0.68	836	67:1%	0.047	8,498	· 944
SB-33	. 0.01,10 K	-395	4	0.54		; ₇ 67 1%	0.047	8,893	988
SB-43	``∴,0.0100.K	430	4	€, √,0.53	837	67.2%	0.047	.∵9,323	1 036
SB-83		326	16	∕∴5:∴2.01	a	67.3%	0.046	9,649	1,072
SB-95	ຶ 13.0000 📆 🖔	87	ি কু 1,133	139.82		્ર '78.6%	0.030	9,736	1,082
SB-97	0.0500 K	182	9	112	980	78.7%	∞::0.030	, 9,918	3,1,102
SB-98	1.0000	3 443	443	54.66	1,034	∵ ≀83.1%	0.024	10,361	1,151
SB-27	0.8200	315	258	31.85	1,066	85.6%	0.020	10,675	1,186
SB-25	0.3600	1,393	501	61.91	1,128	90.6%	0.013	12,068	1,341
SB-102	0.2400	963	231	28.54	1,157	92.9%	0.010	13,031	1,448
SB-138	0.2000	494	99	12.19	1,169	93.9%	0.009	13,525	1,503
SB-139	0.1300 I	461	60	7.40	1,176	94.4%	0.008	13,986	1,554
SB-85	0.0660	315	21	2.57	1,179	94.7%	0.008	14,301	1,589
SB-32	0.0610	581	35	4.37	1,183	95.0%	0.007	14,882	1,654

β-ВНС	2-5 ft bgs	Theissen Polygon							Excavation	
				Mass/		<u> </u>				
Soil Sample	Concentration	Агеа	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume	
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)	
SB-30	0.0600 K	802	48	5.94	1,189	95.5%	0.006	15,684	1,743	
SB-8	0.0558 K	522	29	3.60	1,103	95.8%	0.006	16,206	1,801	
SB-106	0.0530	785	42	5.13	1,198	96.2%	0.005	16,991	1,888	
SB-106 SB-194	0.0520	181	9	1.16	1,198	96.2%	0.005	17,172	1,908	
			10	1.10	1,199	96.4%	0.005			
SB-190 SB-84	0.0510 0.0500 K	195 466	23	2.88	1,200	96.4%	0.005	17,367 17,833	1,930	
		137	`6	0.71		96.7%			1,981	
SB-201	0.0420 U		15	1.91	1,204		0.005	17,970	1,997	
SB-140	0.0410 1	377			1,206	96.8%	0.005	18,347	2,039	
TSB-18	0.0400	1,235	49	6.10	1,212	97.3%	0.004	19,582	2,176	
SB-202	0.0370	157	6	0.72	1,213	97.4%	0.004	19,740	2,193	
SB-17	0.0300	645	19	2.39	1,215	97.6%	0.003	20,384	2,265	
SB-143	0.0280	879	25	3.04	1,218	97.8%	0.003	21,263	2,363	
SB-13	0.0198 K	571	11	1.40	1,220	97.9%	0.003	21,835	2,426	
SB-14	0.0190	1,873	36	4.39	1,224	98.3%	0.002	23,708	2,634	
SB-206_	0.0190 U	946	18	2.22	1,226	98.4%	0.002	24,654	2,739	
SB-132	0.0180	539	10	1.20	1,227	98.5%	0.002	25,194	2,799	
SB-11	0.0120	565	7	0.84	1,228	98.6%	0.002	25,759	2,862	
SB-35	0.0120	406	5	0.60	1,229	98.7%	0.002	26,165	2,907	
SB-109	0.0100 K	1,071	. 11	1.32	1,230	98.8%	0.002	27,237	3,026	
SB-26	0.0100 K	87	1	0.11	1,230	98.8%	0.002	27,323	3,036	
SB-93	0.0100 K	576	6	0.71	1,231	98.8%	0.002	27,899	3,100	
SB-135_	0.0095 K	338	3	0.40	1,231	98.9%	0.002	28,238	3,138	
SB-217	0.0079	392	3	0.38	1,232	98.9%	0.002	28,630	3,181	
SB-198_	0.0076	160	1	0.15	1,232	98.9%	0.002	28,790	3,199	
SB-19	0.0074	638	5	0.58	1,232	98.9%	0.002	29,427	3,270	
SB-92	0.0074 1	831	. 6	0.76	1,233	99.0%	0.001	30,258	3,362	
SB-20	0.0067 I	616	4	0.51	1,234	99.0%	0.001	30,874	3,430	
SB-136_	0.0060 I	667	4	0.49	1,234	99.1%	0.001	31,541	3,505	
SB-22	0.0059	977	6	0.71	1,235	99.1%	0.001	32,518	3,613	
SB-210	0.0054	144	1	0.10	1,235	99.2%	0.001	32,661	3,629	
SB-196	0.0045	447	2	0.25	1,235	99.2%	0.001	33,108	3,679	
SB-211	0.0038 U	287	1	0.13	1,235	99.2%	0.001	33,395	3,711	
SB-23	0.0027	1,502	4	0.50	1,236	99.2%	0.001	34,897	3,877	
TSB-14	0.0025 U	1,465	4	0.45	1,236	99.3%	0.001	36,362	4,040	
TSB-19	0.0025 U	1,609	4	0.50	1,237	99.3%	0.001	37,971	4,219	
TSB-22	0.0025 U	1,278	3	0.39	1,237	99.3%	0.001	39,250	4,361	
TSB-27	0.0025 U	771	2	0.24	1,237	99.3%	0.001	40,021	4,447	
TSB-28	0.0025 U	1,910	5	0.59	1,238	99.4%	0.001	41,930	4,659	
TSB-9	0.0025 U	1,439	4	0.44	1,238	99.4%	0.001	43,369	4,819	
SB-108	0.0024 U	379	1	0.11	1,239	99.4%	0.001	43,748	4,861	
SB-141	0.0024 U	1,025	2	0.30	1,239	99.5%	0.001	44,773	4,975	
SB-10	0.0023 U	865	2	0.25	1,239	99.5%	0.001	45,638	5,071	
SB-58	0.0023 I	44	0	0.01	1,239	99.5%	0.001	45,682	5,076	
SB-101	0.0022 U	2,503	6	0.68	1,240	99.5%	0.001	48,185	5,354	
SB-104	0.0022 U	2,055	5	0.56	1,240	99.6%	0.001	50,240	5,582	

B-BHC	2-5 ft bgs		Theis	sen Polygo	n			Excavation		
p Bitte	2 0 11 bgo		111010	Mass/		ľ		- LAUG	-	
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume	
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)	
SB-195	0.0022	801	2	0.22	1,241	99.6%	0.001	51,040	5,671	
SB-Q	0.0022 I	615	1	0.17	1,241	99.6%	0.001	51,655	5,739	
SB-100	0.0021 U	1,220	. 3	0.32	1,241	99.6%	0.001	52,875	5,875	
SB-103	0.0021 U	1,790	4	0.46	1,242	99.7%	0.000	54,664	6,074	
SB-184	0.0021 U	2,105	4	0.55	1,242	99.7%	0.000	56,770	6,308	
SB-185	0.0021 U	270	1	0.07	1,242	99.7%	0.000	57,040	6,338	
SB-200	0.0021 U	187	0	0.05	1,242	99.7%	0.000	57,227	6,359	
SB-208	0.0021 U	303	1.	0.08	1,242	99.7%	0.000	57,530	6,392	
SB-209	0.0021 U	267	1	0.07	1,242	99.7%	0.000	57,797	6,422	
SB-99	0:0021 U	1,266	3	0.33	1,243	99.8%	0.000	59,063	6,563	
SB-181	0.0020 U	2,424	5	0.60	1,243	99.8%	0.000	61,486	6,832	
SB-207	0.0020 U	724	-1	0.18	1,243	99.8%	0.000	62,210	6,912	
SB-24	0.0020 U	1,515	3	0.37	1,244	99.9%	0.000	63,725	7,081	
SB-34	0.0020 U	365	1	0.09	1,244	99.9%	0.000	64,090	7,121	
SB-B	0.0020 U	31	0	0.01	1,244	99.9%	0.000	64,121	7,125	
SB-5	0.0020 U	720	1	0.18	1,244	99.9%	0.000	64,840	7,204	
SB-P	0.0019 U	210	0	0.05	1,244.2	99.9%	0.000	65,050	7,228	
SB-126	0.0019 U	727	1	0.17	1,244	99.9%	0.000	65,777	7,309	
SB-127	0.0019 U	560	1	0.13	1,244	100%	0.000	66,337	7,371	
SB-128	0.0019 U	253	0	0.06	1,245	100%	0.000	66,590	7,399	
SB-129	0.0019 U	261	0	0.06	1,245	100%	0.000	66,851	7,428	
SB-130	0.0019 U	455	1	0.11	1,245	100%	0.000	67,306	7,478	
SB-133	0.0019 U	371	1	0.09	1,245	100%	0.000	67,677	7,520	
SB-142	0.0019 U	421	1	0.10	1,245	100%	0.000	68,098	7,566	
SB-21	0.0019 U	1,123	2	0.26	1,245	100%	0.000	69,221	7,691	
SB-C	0.0019 U	908	2	0.21	1,245	100%	0.000	70,128	7,792	
SB-134	0.0019	185	0	0.04	1,245	100%	0.000	70,313	7,813	
SB-96	0.0019 U	618	1	0.14	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	ō	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%	0.000	70,931	7,881	
ND	0.0000	0	0	0.00	1,246	100%		70,931	7,881	
Total		70,931	10,089	1,246	· · · · · · · · · · · · · · · · · · ·			<u>÷</u> -		

AWA - Area weighted average

δ-BHC 2	2-5 ft bgs		7	Theissen Po	olygon			Excav	ation
			*.	Mass/		1			
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID .	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
No excavation	, , , , , ,		(13 1113113)	1,033			0.201		
SB-105	0.0027 U	*** 451	2000年1900年1900年	∵≥ ** 0:15	5 N 0	. 0%	× 4.0.200	451	50
SB-107	7 0.0125 K	307	4	0.47	C 25 8.35. 7 1	0%	0.200	± 758	84
SB-12	0.0790	69	5	0.67		7.0%	0.200	826	92
SB-150	€ 10.0000. ≸∑	. 97	973	- ⊹ 120.10	121	12%	0.177	Ay 924	103
SB-151	0.6700	148	99	12.20	134	13%	0.175	1,071	* 119
SB-152	0.1200°U	317	See 38	4.70	138	13%	~ 0.174	£1,388	154
SB-153		244	242	29.82	168	16%	0.168	1.632	181
SB-154	12:0000	215	2,577	318:20	486	47%	0.106	Jan 1.847	205
SB-186	0.2800	- 4/129	15.2 O. 75.1 C. 1 36	4:47	491	47%	0.105	1,976	220
SB-187	0.0250 U	∵ 110	3	0.34	: 2491	48%	. 0.105	2.087	232
SB-188*	0.2700	. 3141	- 4 4 A 38	4.71	496	48%	0.104	2.228	248
SB-189	0:0240°U	154	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.46	496	48%	····0:104	2,382	265
SB-191	0.0027 U	132	2. 2. 2. 0	0.04	496	48%	0.104	2,514	279
SB-192	0:0024 U	- 110	ERFORENCE	0.03	496	48%	0.104	2.623	2 - 291
SB-193	0.0190	128	2	0.30	497	* 48%	0.104	2:751	306
SB-197	0.1300	173	22	×, 2.77	499	48%	0:104	2.923	325
SB-199	0.1500	164	25	3:03	502	49%	0.103	3.087	- 343
SB-203	0.0280	155	4	0.54	503	49%	0.103	3.242	360
SB-204	0.0029°U	₹ • ±170	127 - 127 CTSO	0.06	503	49%	20.103	3,412	379
SB-205	0.4300	168	72	8.91	512	50%	0:101	3,580	398
SB-212	3.3000	· 216	714	× × 88.16	600	%:58%	0.084	3,796	422
SB-213	0.0024 U	349		0.10	- 600	58%	0.084	° 4.145	461
SB-214	0.0180	293	35	0.65	601		0.084	4.438	493
SB-215	0.0024 U-7	283		-> 0.08	601	58%	0:084	* 4:721	7525
SB-216	0.0440	424	*20.1-6*19	2.30	5 603	ž 58%	0.083	5.145	572
SB-218	0.0140	* 849	12	£ 1.47.	605	×** 59%	0.083	5.994	. 666
SB-219	0:0028	314	255 4.557	> 0.11	605	59%	0.083	6:307	701
SB-28	0.0125 K	685	9	- € 1.06	6 606	₹ 59%	₹ 0.083	6,992	7777
SB-29	0.0125 K	- 540	20 3 30 27	0.83	607	59%	0.083	7.533	837
SB-31	650:0125 K	548	34 24 C 7	0.84	608	59%	0.083	8.080	. 898
SB-33	0.7300	395	288	35.58	643	62%	1720.076	8,475	942
SB-44	0.0125 K	454	14 July 146	~ 3:10.70	644	£ 62%	0.076	- 8,929	- 992
SB-45	0.0130 K	. 3350	×5	0.56	644	62%	0.075	9,279	. 1,031
SB-47	0.7600	599	455		701	68%	0.065	9,878	1.098
100	4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1		20	44.74	2	4.0	0.064		1.134
	8.0000		697						
			218						
	0.6100		270						
SB-108	2.2000	379				92%			
SB-211	0.8900	287	255			95%			
SB-26	0.4600	87	40	4.92		96%			
SB-27	0.1600	315				96%			
SB-102	0.0980	963	94				0.005		
SB-30	0.0700 K	802	56				0.004		
SB-80	0.0650 K	223	15						
SB-84	0.0600 K	466							

δ-BHC	2-5 ft bgs		· · · · · · · · · · · · · · · · · · ·	heissen Po	olvaon			Excav	ation
	3			Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-201	0.0520 U	137	7	0.88	1,020	99%	0.003	14,573	
SB-13	0.0242 K	571	14	1.71	1,021	99%	0.002	15,144	1,683
SB-25	0.0125 K	1,630	20	2.52	1,024	99%	0.002	16,775	
SB-78	0.0125 K	381	5	0.59	1,024	·99%	0.002	17,156	1,906
SB-79	0.0125 K	370	5	0.57	1,025	99%	0.002	17,526	1,947
SB-93	0.0120 K	576	7	0.85	1,026	99%	0.001	18,102	2,011
SB-135	0.0115 K	338	4	0.48	1,026	99%	0.001	18,440	2,049
SB-210	0.0098	144	1	0.17	1,026	99%	0.001	18,584	2,065
SB-34	0.0079 1	365	3	0.36	1,027	99%	0.001	18,949	2,105
SB-C	0.0065 I	908	6	0.73	1,028	99%	0.001	19,856	2,206
SB-198	0.0062	160	1	0.12	1,028	99%	0.001	20,016	2,224
SB-202	0.0055	157	1	0.12	1,028	99%	0.001	20,174	2,242
SB-35	0.0039 1	406	2	0.11	1,028	99%	0:001	20,580	2,287
SB-106	0.0039 U	785	2	0.20	1,028	99%	0.001	21,365	2,374
SB-132	0.0029 U	539	2	0.20	1,028	100%	0.001	21,904	2,434
SB-19	0.0029 U	638	2	0.13	1,029	100%	0.001	22,542	2,505
SB-10	0.0029 U	865	2	0.20	1,029	100%	0.001	23,407	2,601
SB-101	0.0023 U	2,503	7	0.83	1,030	100%	0.001	25,910	2,879
SB-194	0.0027 U	181	0	0.06	1,030	100%	0.001	26,091	2,899
SB-194	0.0027 U	826	2	0.00	1,030	100%	0.001	26,917	2,991
SB-32	0.0026 U	581	2	0.27	1,030	100%	0.001	27,498	3,055
SB-200	0.0026 U	187	0	0.19	1,030	100%	0.001	27,436	3,033
SB-85	0.0026 U	315	1	0.00	1,030	100%	0.001	28,001	3,111
SB-Q	0.0026 U	615		0.10	1,030	100%	0.001	28,615	3,179
SB-100	0.0025 U	1,220	3	0.20	1,031	100%	0.000	29,835	3,315
SB-185	0.0025 U	270	. 1	0.08	1,031	100%	0.000	30,105	3,345
SB-58	0.0025 U	44	0	0.01	1,031	100%	0.000	30,150	3,350
SB-B	0.0025 U	31	0	0.01	1,031	100%	0.000	30,180	3,353
SB-92	0.0025 U	831	2	0.01	1,031	100%	0.000	31,011	3,446
SB-190	0.0025 U	195	0	0.26	1,031	100%	0.000	31,206	3,467
SB-22	0.0025 U	977	2	0.08	1,031	100%	0.000	32,182	3,576
SB-24	0.0024 U	1,515	4	0.45	1,032	100%	0.000	33,697	3,744
SB-96	0.0024 U	618	1	0.43	1,032	100%	0.000	34,315	3,813
SB-P	0.0024 U	210	0	0.16	1,032	100%	0.000	34,525	3,836
SB-130	0.0023 U	455	1	0.00			0.000	34,980	
SB-133	0.0023 U	371		0.13		100%	0.000	35,351	
SB-133	0.0023 U	645	1	0.11	1,033 1,033	100%	0.000	35,996	
SB-17	0.0023 U	185	0	0.18	1,033	100%	0.000	36,180	
SB-20	0.0023 U	616	1	0.05	1,033	100%	0.000	36,796	
SB-11	0.0023 U	565	1	0.17	1,033	100%	0.000	37,361	
SB-11	0.0022 U	769	2	0.15	1,033	100%	0.000	38,131	
SB-195	0.0022 U	801	0	0.21	1,033	100%	0.000	38,932	
SB-195					1,033	100%	0.000	39,378	
SB-196 SB-206	0.0000 U	447	· 0	0.00	1,033	100%	0.000	40,325	
	0.0000 U	946 724	0		1,033	100%	0.000	41,049	
SB-207	0.0000 U			0.00		100%			
SB-208	0.0000 U	303	0	0.00	1,033		0.000	41,352	
SB-217	0.0000 U	392	0	0.00	1,033	100%	0.000	41,744	
ND	0.0000	0	0	0.00	1,033	100%	0.000	41,744	4,638

δ-BHC 2-5 ft bgs		Theissen Polygon							Excavation	
Soil Sample	Concentration (mg/kg)	Area (ft²)	Weighted Area (ft²-mg/kg)	Mass/ polygon (grams)	Total Mass (grams)	% mass	AWA (mg/kg)	Area (ft²)	Volume (yd ³)	
ND	0.0000	0	0	0.00	1,033	100%	0.000	41,744	4,638	
ND	0.0000	0	0	0.00	1,033	100%	0.000	41,744	4,638	
ND	0.0000	0	0	0.00	1,033	100%	0.000	41,744	4,638	
ND	0.0000	0	0	0.00	1,033	100%		41,744	4,638	
Total		41,744	8,370	1,033						

AWA - Area weighted average

γ-BHC	2-5 ft bgs	[Theis	sen Polyg	on			Excav	ation
			Weighted	Mass/	Total	1			
Soil Sample	Concentration	Area	Area	polygon	Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
No excavatio	n .			1,542		•	0.208		
SB-105		451	0	0.04	0,475	0%	0.208	: 451	; 50
SB-107	0.0034 K	307	学生 海边被敌	0.13	0 : 10	530%	2 0.208	758	- 84
SB-12	¥0.0120	69	分以透過的改造1	0.10	- 0	.⇒ 0%	0.208	826	92
SB-137	₩ 0.0032 K 🏖	* 418	Property of	₹°0.17	°° 5 € 05 0	∞ √′0%	∴0.208	1,245	138
SB-150	_19.0000	97	1,848	228.18	,229	15%	0.177	1,342	3 149
SB-151	0.6500	148	96	11.84	240	16%	∞0.176	:::1,490	5, 166
SB-152	0:0320 U	317	2010	÷ 1:25	242	∄∴16%	0.175	. 1,807	<u></u> 201
SB-153	0.2700	244		8.13	250	16%	0.174	2,051	::228
SB-154	0:0430 U	215	· 学文本 参9	. 1114	251	.्∴16 %	<i>≥</i> 0.174	2,265	252
SB-186	*0.4800	129	62	7.67	259	্ৰ, 17%	0.173	2,395	266
SB-187	₩0.0780	110	进入的第三人称单	1.06	× ≥ 260	17%	× 0.173	∵ ∙2;505	;≟₃27.8
SB-188	2.2000	141	311	. 38.39	298	19%	0:168	2,646	- 294
SB-189	3.0000	154	462	57.04	355	4.5%.,23%	. 0.160	2,800	311
SB-191	0.0007/U	132		0.01	355	23%	0 160	2,932	326
SB-192	0.0092	110	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.12	355	23%	, 0.,160	∓ , 3,041	338
SB-193	0.0180	128	2.2	0.28	356	23%	0.160	3,169	352
SB-197:	0:0074 U	173	4. * 3.54 2.1	0.16	356	23%	0.160	3,341	371
SB-199∑ ₃-	0.0007 U	₫ 164		0:01	356	≨⊭∴23 %	.∻0-160	- 3,505	74 389
SB-203	0.0059	. 155	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	757 0.11	356	23%	0.160	3,660	407
SB-204	±0.0008 U	170	进入1997年 0	0.02	, 356	23%	0.160	. 3,830	426
SB-205	0.8700	168	146	18.04	374	24%	© 0.158	° 3,998	*: 444
SB-212	.⇒ 0:0008.U	216	- 60	- ↓∖0.02	∴ 374	24%	0:158	4,215	468
SB-213	· 0:0020	349	CANTEL COST	5.74.0.09	∵ → ∴374	24%	∹0.158	4,563	507
SB-214	0.0110	293	\$	0.40	374	24%	0.157	4,856	540
SB-215	O:0091 🚉 .	🚅 283	M. 2014-13-3	, 0.32	<u>ાન્યું તે</u> 375	24%	' ₋ 0.157	5;139 کی	3.571
SB-216	0:0190 ⊴ 4	424		∴ ∴ 0.99	376	24%	0.157	5,563	: 618
SB-218	0.0096	849	5 4 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.01	377	. 24%	0.157	6,412	712
SB-219	0:0007 U	314		0:03	2. 377	24%	0.157	6,726	<i>></i> 747,
SB-28	0.0034 K	685	2	0.28	37,7	24%	0.157	7,411	*** 823
SB-29	1.6000	540	864	106.72	484	31%	0.143	7,951	883
SB-31	1.3000	548	712	* 387.88	572	37%	0.131	8,498	944
SB-33	1.1000	395	434	53.61	£	41%	0.124	747	988
SB-43	0.7700	430			666				
SB-44≤	2.3000	<u> 454</u>				્રે 52%			1,086
SB-45	1 2000	350			847			10,128	
SB-47	2.0000	599	1,197	147.83		65%			1,192
SB-83	•0:0170 K≕	326	6	• 0.68	996			11,052	
SB-95	0.01705K	87	1	0.18					
SB-97					1,113				1,258
SB-98.	0.0165 K	443	%		≛;⊴∴ <u>/</u> (;113		···0.058		1,307
SB-44	2.3000	454	1,045	129.00	1,242	81%	0.040	12,218	1,358
SB-47	2.0000	599	1,197	147.83	1,390	90%	0.020	12,817	1,424
SB-45	1.2000	. 350	420	51.88	1,442	94%	0.013	13,167	1,463
SB-27	0.9600	315	302	37.28	1,479	96%	0.008	13,482	1,498

γ-BHC 2	2-5 ft bgs		Theis	sen Polyg	on			Excav	ation
			Weighted	Mass/	Total				
Soil Sample	Concentration	Area	Area	polygon	Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-43	0.7700	430	331	40.90	1,520	99%		13,912	1,546
SB-32	0.0510	581	30	3.66	1,524	99%	0.002	14,493	1,610
SB-17	0.0470	645	30	3.74	1,528	99%	0.002	15,138	1,682
SB-202	0.0440	157	7	0.86	1,529	99%	0.002	15,295	1,699
SB-8	0.0186 K	522	10	1.20	1,530	99%	0.002	15,817	1,757
SB-80	0.0175 K	223	4	0.48	1,530	99%	0.002	16,040	1,782
SB-84	0.0170 K	466	8	0.98	1,531	99%	0.001	16,506	1,834
SB-201	0.0140 U	137	2	0.24	1,531	99%	0.001	16,643	1,849
SB-20	0.0096	616	6	0.73	1,532	99%	0.001	17,259	1,918
SB-138	0.0075	494	4	0.46	1,533	99%	0.001	17,753	1,973
SB-11	0.0073	565	4	0.51	1,533	99%	0.001	18,318	2,035
SB-194	0.0068	181	. 1	0.15	1,533	99%	0.001	18,499	
SB-13	0.0066 K	571	4	0.47	1,534	99%	0.001	19,071	2,119
SB-206	0.0064 U	946	6	0.75	1,535	100%	0.001	20,017	2,224
SB-35	0.0043	406	2	0.22	1,535	100%	0:001	20,424	2,269
SB-190	0.0041	195	1	0.10	1,535	100%	0.001	20,619	2,291
SB-210	0.0040	144	1	0.07	1,535	100%	0.001	20,762	2,307
SB-79	0.0035 K	370	1	0.16	1,535	100%	0.001	21,132	2,348
SB-78	0.0034 K	381	1	0.16	- 1,535	100%	0.001	21,513	2,390
SB-109	0.0034 K	1,071	4	0.44	1,536	100%	0.001	22,585	
SB-26	0.0034 K	87	0	0.04	1,536	100%	0.001	22,671	2,519
SB-46	0.0034 K	2,231	7	0.92	1,537	100%	0.001	24,902	2,767
SB-88	0.0034 K	794	3	0.33	1,537	100%	0.001	25,696	2,855
SB-102	0.0033	963	3	0.39	1,537	100%	0.001	26,659	2,962
SB-93	0.0033 K	576	2	0.23	1,538	100%	0.001	27,235	3,026
SB-135	0.0032 K	338	1	0.13	1,538	100%	0.001	27,574	3,064
SB-140	0.0032 K	377	1	0.15	1,538	100%	0.001	27,951	3,106
SB-34	0.0031	365	. 1	0.14	1,538	100%	0.000	28,315	3,146
TSB-22	0.0025 U	1,278	3	0.39	1,538	100%	0.000	29,594	3,288
TSB-27	0.0025 U	771	2	0.24	1,539	100%	0.000	30,365	3,374
TSB-9	0.0025 U	1,439	4	0.44	1,539	100%	0.000	31,804	3,534
SB-139	0.0016 K	461	1	0.09	1,539	100%	0.000	32,265	3,585
SB-19	0.0016	638	1	0.12	1,539		0.000	32,902	
SB-103	0.0013	1,790	2	0.28	1,540				
SB-108	0.0008 U	379	0	0.04	1,540	100%		35,071	
SB-10	0.0008 U	865	1	0.08	1,540	100%		35,935	
SB-211	0.0008 U	287	0	0.03	1,540		0.000	36,222	
SB-209 SB-101	0.0008 U 0.0007 U	267	0	0.03 0.23	1,540	100%	0.000	36,489	
SB-101	0.0007 U	2,503	2		1,540	100% 100%	0.000	38,992	
SB-104 SB-195	0.0007 U	2,055	. 1	0.18 0.07	1,540			41,047	
SB-195	0.0007 U	801	1		1,540		0.000	41,847	
SB-198	0.0007 U	447	0	0.04 0.01	1,540		0.000		
SB-196	0.0007 U	160 187	0	0.01	1,540 1,540		0.000		
SB-200 SB-42	0.0007 U							_	
OB-42	U.UUU/ U	1,112	1	0.10	1,540	100%	0.000	43,754	4,862

у-ВНС	2-5 ft bgs		Theis	sen Polyg	on ,			Excav	ation
			Weighted	Mass/	Total				
Soil Sample	Concentration	Area	Area	polygon	Mass	% mass	AWA	Area	Volume
ID ·	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-85	0.0007 U	315	0	0.03	1,540	100%	0.000	44,069	4,897
SB-89	0.0007 U	213	0	0.02	1,540	100%	0.000	44,282	4,920
SB-Q	0.0007 U	615	0	0.05	1,540	100%	0.000	44,896	4,988
SB-100	0.0007 U	1,220	1	0.10	1,541	100%	0.000	46,116	5,124
SB-58	0.0007 U	44	0	0.00	1,541	100%	0.000	46,160	5,129
SB-207	0.0007 U	724	0	0.06	1,541	100%	0.000	46,884	5,209
SB-B	0.0007 U	31	0	0.00	1,541	100%	0.000	46,915	5,213
SB-92	0.0007 U	831	1	0.07	1,541	100%	0.000	47,746	5,305
SB-21	0.0007 U	1,123	1	0.09	1,541	100%	0.000	48,869	5,430
SB-217	0.0007 U	392	0	0.03	1,541	100%	0.000	49,260	5,473
SB-22	0.0007 U	977	1	0.08	1,541	100%	0.000	50,237	5,582
SB-23	0.0007 U	1,502	1	0.12	1,541	100%	0.000	51,739	5,749
SB-C	0.0007 U	908	1	0.07	1,541	100%	0.000	52,647	5,850
SB-96	0.0007 U	618	0	0.05	1,541	100%	0.000	53,265	5,918
SB-P	0.0006 U	210	0	0.02	1,541	100%	0.000	53,475	5,942
SB-129	0.0006 U	261	0	0.02	1,541	100%	0.000	53,736	5,971
SB-130	0.0006 U	455	0	0.04	1,541	100%	0.000	54,191	6,021
SB-132	0.0006 U	539	0	0.04	1,541	100%	0.000	54,730	6,081
SB-127	0.0006 U	560	. 0	0.04	1,541	100%	0.000	55,291	6,143
SB-128	0.0006 U	253	0	0.02	1,541	100%	0.000	55,543	6,171
SB-49	0.0006 U	2,868	2	0.22	1,542	100%	0.000	58,411	6,490
SB-134	0.0006 U	185	0	0.01	1,542	100%	0.000	58,596	6,511
SB-136	0.0006 U	667	0	0.05	1,542	100%	0.000	59,263	6,585
SB-3	0.0006 U	769	0	0.06	1,542	100%	0.000	60,033	6,670
ND	0.0000	0	0	0.00	1,542	100%	0.000	60,033	6,670
ND	0.0000	0	. 0	0.00	1,542	100%	0.000	60,033	6,670
ND	0.0000	. 0	0	0.00	1,542	100%		60,033	6,670
Total		60,033	12,487	1,542					

AWA - Area weighted average

Toxaphen	e 2-5 ft bgs		Thei	ssen Polyge	on			Excav	ation
				Mass/		1			
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
D	(mg/kg)	(ft ²)	(ft²-mg/kg)	(grams)	(grams)	٠.	(mg/kg)	(ft²)	(yd³)
No Excavation	*			23,655			5.34		
SB-105	0.2800°U	451	126	15.60	16	0%	5.33	451	%≟ "5.50
SB-107%	190:0000	307	58,239	7,190.27	7,206	30%	::-(3.71	758	. 84
SB-12	\$414.0000 A	√ -69	961	118.60	7,324	₹31%	√.3.68	826	92
SB-150	14:0000°U	97	1,362	168:13	7,493	32%	<i>-</i> °∴ 3.65	924	103
SB-151	150 0000	148	*22,128	2,731.91	. ≨:≨10,225	3743%	∹,∜3.03	1,071	119
SB-152	78.0000	317	24,729	3,053.09	13,278	∻	2:34	1,388	154
SB-153	5.0000 ⊍	- 244	1,220	150.61	達 13,428	57%	2.31	1,632	181
SB-189	2.5000 U	154	385	.47.54	13,476	57%	2:30	¾1,786	∛ _∕⁄198
SB-191	€ 0.2800 U	132	3.5.37	∜". <i>∴ે,</i> 4:55	13,480	57%	2.30	1,918	213
SB-192	3.6000	3 -110	394	48.70	13,529	57%	2.28	2,027	. 225
SB-193	່າ 0.2600 ປ	i < 128	∯ 33	**** ` : 4.09	13,533	ी∵ 57%	2.28	2,155	∷∴*239
SB-199 🐪 🔠	🤔 0.2800 U	ຼິ≲ ∕∵164	46	5.66	13,539	57%	₹ 52:28	2,319	ી, ×.258
SB-203	ຼິາ ີ 0.2400 ຟ.ຸ	ે 155	37	4.60	13,543	57%	×: 2.28	2,474	×≥275
SB-204	🦃 (0:3000) U 🗥	170	製品に使用で51	6.29	ຸີ 13,550	57%	2.28	2,644	<u>.</u> 294
SB-205 🐍 💛	் 0.5300 U ₹	168	89	10.99	13,561	- 57%	:: :2:28	1.2,812	312
SB-212	,130:0000	216		×3,473.12	3817,034	72%	∵∕1.49	3,028	€ ₹336
SB-213	ั 0.2500 ับ	∵ 349	87	10.76	17,045	₹72%	1.49	3,377	375
SB-214	0:2500 U*	293	73	9.04	17,054	<u></u>	.≝1:49	\$3,670	408
SB-215	ੂੰ ₹ 0.2500 U	∵⇔, 283	数据得到现代1	² : 7 × 8.72	17,062	72%	. 1.49	7 / 3,952	439
SB-216	1.3000	424	≶	68.08	17,130	72%	1.47	4.376	.486
SB-218	0:3000	. 849	255	31:44	17,162	.∻ ∜73 %	:1:46	5, 22 5	581
SB-219	- 0.2600 U	.≅.∵314	82	10:07	17,172	73%	1.46	5,539	615
SB-43	4 1 3000 K	430	559	69.05	17,241	73%	11:45	, 5,969	∲∴ 663
SB-97:	%100:0000 <i>€</i>	√.: 182	18,194	· 2,246.22	19,487	.≽∕∷`82%	∴ 0.94	*f. 6:151	∵∷ 683
SB-129	18.0000	261	4,697	579.87	20,067	85%	0.81	6,412	712
TSB-10	9.6000	1,616	, 15,514	1,915.38	21,982	93%	0.38	8,028	892
SB-95	6.5000 K	87	566	69.91	22,052	93%	0.36	8,115	902
SB-17	3.8000	645	2,451	302.57	22,355	95%	0.29	8,760	973
SB-13	2.5300 K	571	1,446	178.51	22,533	95%	0.25	9,332	1,037
SB-217	1.8000	392	705	87.07	22,620	96%	0.23	9,724	1,080
TSB-27	1.4000	771	1,079	133.25	22,754	96%	0.20	10,494	1,166
SB-26	1.3000 K	87	113	13.90	22,768	96%	0.20	10,581	1,176
SB-79	1.3000 K	370		59.40					
SB-89	0.9200 I	213	196	24.16		97%	0.18		
SB-35	0.5600 I	406	228	28.10			0.18		
SB-106	0.3000 U	785	235	29.06	22,908		0.17		1,373
TSB-9	0.3000	1,439	432	53.30			0.16		1,533
SB-19	0.3000 U	638	191	23.63	22,985		0.15		1,604
SB-211	0.3000 U	287	86	10.61	22,996		0.15		
SB-194	0.2900 U	181	53	6.49			0.15		1,656
SB-103	0.2700 U	1,790	483	59.66	23,062		0.13		1,854
SB-42	0.2700 U	1,112	300	37.07	23,099		0.13		1,978
SB-99	0.2700 U	1,266	342	42.20			0.12		2,119
SB-58	0.2600 U	44	11	1.42	23,143	98%	0.12	19,111	2,123

Toxaphen	e 2-5 ft bgs		Thei	ssen Polyge	on		· · ·	Excav	ation
		_		Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-90	0.2600 U	647	168	20.78	23,164	98%	0.11	19,759	2,195
SB-B	0.2600 U	31	.8	0.98	23,164	98%	0.11	19,789	2,199
SB-190	0.2600 U	195	51	6.25	23,171	98%	0.11	19,984	2,220
TSB-11	0.2500 U	1,610	403	49.71	23,220	98%	0.10	21,595	2,399
TSB-14	0.2500 U	1,465	366	45.21	23,266	98%	0.09	23,059	2,562
TSB-15	0.2500 U	1,594	398	49.20	23,315	99%	0.08	24,653	2,739
TSB-28	0.2500 U	1,910	477	58.95	23,374	99%	0.06	26,563	2,951
TSB-5	0.2500 U	1,915	479	59.12	23,433	99%	0.05	28,479	3,164
TSB-6	0.2500 U	1,635	409	50.46	23,483	99%	0.04	30,113	3,346
SB-96	0.2500 U	618	155	19.08	23,502	99%	0.03	30,731	3,415
SB-202	0.2500 U	157	39	4.86	23,507	99%	0.03	30,889	3,432
SB-126	0.2400 U	727	174	21.53	23,529	99%	0.03	31,616	3,513
SB-127	0.2400 U	560	135	16.61	23,545	100%	0.02	32,176	3,575
SB-128	0.2400 U	253	61	7.49	23,553	100%	0.02	32,429	3,603
SB-130	0.2400 U	455	109	13.48	23,566	100%	0.02	32,884	3,654
SB-131	0.2400 U	744	179	22.05	23,588	100%	0.02	33,628	3,736
SB-133	0.2400 U	371	89	10.99	23,599	100%	0.01	33,999	3,778
SB-132	0.2400 U	539	129	15.98	23,615	100%	0.01	34,538	3,838
SB-134	0.2400 U	185	44	5.48	23,621	100%	0.01	34,723	3,858
SB-20	0.2400 U	616	148	18.24	23,639	100%	0.00	35,338	3,926
SB-11	0.2300 U	565	130	16.05	23,655	100%	0.00	35,903	3,989
ND	0.0000	0	0	0.00	23,655	100%	0.00	35,903	3,989
ND	0.0000	0	0	0.00	23,655	100%	0.00	35,903	3,989
ND_	0.0000	0	0	0.00	23,655	100%	0.00	35,903	3,989
ND	0.0000	0	0	0.00	23,655	100%	0.00	35,903	3,989
ND	0.0000	0	0.000	0.00	23,655	100%		35,903	3,989
Total		35,903	191,599	23,655					

AWA - Area weighted average

Chlordar	ne 2-5 ft bgs	<u> </u>	The	eissen Polyge	on			Exca	/ation
			Weighted	Mass/					
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Area	Volume
םו ו	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
No Excavation		1 1 1 1	(1.1.3.1.3)	70,575			8.21	(,	
SB-105	0.0570	451	26	A 35 318	3	∵ ∗ 0%	8:21	451	<i>*</i> 50
SB-107	102.0000	- 307	31,265	N 44 C - 144 C -	3,863	5%	× 7.76	758	~ 84
SB-12	0.8500	65	56	6:86	3 870	5%	≛∍7:7 6	823	/x 3≈91
SB-137c	550.0000	418	230:081	28.406.25	32.276	3.5 46%	4.46	1.242	.138
SB-150	70.0000	97	6,809	840.68	33.117	47%	4.36	""· 1:339	149
SB-151	14.4000	148	2,124	- 262:27	33,379	47%	4.33	1.486	165
SB-152	15.3000	317	4,851		33,978	48%	4.26	1,803	200
SB-153	0:3000	244	7.3	9:04	33,987	48%	3 4.26	2.047	227
SB-154	340.0000	215	73,024	9,015.69	43,003	61%	÷:3.21	2.262	251
SB-186	1.4000	129	181	22:37	43,005	61%	3:21	2,202	266
SB-187	7:5000	129	826	102.02	43,025	61%	3.19	2,592	278
SB-188	4:8000	141	678	83.76	43,211	61%	3.18	2,643	294
SB-189	8.5000	× 154	1,309	161.62	343,21,1 343,373	61%	3.17	2,797	311
SB-192	0.6300	110	. 69	8.52	43,373	61%	3:17	2:907	323
SB-197	0.4900				43,361	61%			342
SB-199	0.3600	3 173 √ 164	************59	10.44 7.27	43,399	61%	3.16 3.16	3,079 - 3,243	342
7,77		170	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 - + 7 - 50 - 1					
SB-204	0.0290		5	,0.61	43,399	⇒ 61% 	3.16	3,413	379
SB-212	0.5800	[∓] 7·**244	141	17:44	43,417	62%	3:16	3,656	406
SB-213	0.5200	356	185	22.85	43,440	62%	3.16	4,012	446
SB-215	0.1800	283		6.28	43,446	∴ _∞ .62%	3.16		477
SB-216	0.1300	416	54ء تي الله	6:67	43,453	62%	3.16	4,7,10	_±523
SB-218	0:1400	. ≟670	:94	11.57	43,464	.: :: 62%	⊬ ≒3.16	5,380	598
SB-28	2:0600	685	\$71, 41 1	174.23	43,639	62%	⊁^-3:14	6,065	⁷ ≈ 674
SB-29	13.8000	2. 540	7,455	- 920.43	44,559	63%	× 3.03	6,605	. 734
SB-315	15:3000	548	8,377	° - ∩1;034:27.	45,593	65%	\$\$2:91	<i>(√,</i> 7,153	<i>∴</i> ∴ 795
SB-33	5 1000	395	2,013	248:55	45,842	ે 65%	2.88	7,547	₹ 839
SB-43	15:2000	430	6,539	: 807.32	46,649		2.78	7,978	886
SB-44	- /13.1000	· 454	5,951	, 734.76	47;384	.67%	2.70	8,432	937
SB-45	√ 15.7000	350	5,498	678.75	48,063	68%	2.62	8,782	· \$ 376
SB-47		599	4,670	576.54	48,639	69%	∜∵2.55	9,381	1,042
SB-83	26 0000	326	8,465	., 1,045:13	49,684	70%	2.43	9,706	41,078.5
SB-95	2150.0000	87	13,067	1,613.32	51,298	73%	2:24	≥ 9793	
SB-98	24.0000	: 443	之(10,626	s, ∿1,311.91.	52,610	- 75%	2.09	10,236	1,137
SB-30	31.0000	802	24,853	3,068.41	55,678	79%	1.73	11,038	1,226
SB-46	26.0000	2,231	58,006	7,161.58	62,840	89%			
SB-108	24.0000	379	9,086	1,121.84	63,961	91%			
SB-97	22.0000	182	4,003			91.3%			
SB-79	14.8000	370	5,477	676.25	65,132	92%	0.63	<u> </u>	
SB-93	13.7000	576	7,894	974.67	66,106	94%	0.52		
SB-84	11.0000	466	5,124	632.65	66,739	95%	0.45		
SB-8	6.1000	522	3,186	393.32	67,132	95%	0.40		
SB-80	5.9000	223	1,316	162.50	67,295	95%	0:38	15,987	1,776
SB-130	4.9000	455	2,229	275.19	67,570	96%	0.35		1,827
SB-102	4.2000	963	4,045	499.42	68,070	96%	0.29	17,405	1,934
SB-78	3.8000	381	1,448	178.75	68,248	97%	0.27	17,786	
SB-129	3.6000	261	939	115.97	68,364	97%	0.26	18,047	2,005
SB-201	3.6000	137	494	60.96	68,425	97%	0.25	18,184	2,020

Chlordan	e 2-5 ft bgs		The	issen Polygo	on		-	Excav	ation
			Weighted	Mass/					
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-13	3.1000	987	3,061	377.89	68,803	97%	0.21	19,171	2,130
SB-26	2.9000	87	251	31.02	68,834	98%	0.20	19,258	2,140
SB-211	2.5000	182	454	56.04	68,890	98%	0.20	19,440	2,160
SB-109	2.3000	1,071	2,464	304.23	69,194	98%	0.16	20,511	2,279
SB-32	1.6500	581	958	118.31	69,313	98%	0.15	21,092	2,344
SB-14	1.2600	1,873	2,360	291.40	69,604	99%	0.11	22,965	2,552
SB-135	1.1000	338	372	45.94	69,650	99%	0.11	23,303	2,589
SB-206	1.0000	946	946	116.85	69,767	99%	0.09	24,250	2,694
SB-139	0.9300	461	429	52.93	69,820	99%	0.09	24,711	2,746
SB-24	0.9200	1,515	1,394	172.05	69,992	99%	0.07	26,225	2,914
SB-88	0.9000	794	714	88.18	70,080	99%	0.06	27,019	3,002
SB-131	0.8800	744	655	80.83	70,161	99%	0.05	27,763	3,085
TSB-27	0.8800	771	678	83.76	70,245	100%	0.04	28,534	3,170
SB-207	0.8000	589	471	58.13	70,303	100%	0.03	29,123	3,236
SB-140	0.5900	377	222	27.46	70,330	100%	0.03	29,499	3,278
SB-133	0.3800	371	141	17.40	70,348	100%	0.03	29,870	3,319
SB-138	0.3100	494	153	18.90	70,367	99.7%	0.02	30,364	3,374
SB-200	0.2600	187	49	6.01	70,373	100%	0.02	30,551	3,395
SB-17	0.2500	645	161	19.91	70,392	100%	0.02	31,196	3,466
SB-196	0.2300	447	103	12.69	70,405	100%	0.02	31,643	3,516
SB-198	0.2100	160	34	4.15	70,409	100%	0.02	31,803	3,534
SB-89	0.1920	213	41	5.04	70,414	100%	0.02	32,016	3,557
SB-217	0.1900	392	74	9.19	70,424	100%	0.02	32,408	3,601
SB-136	0.1360	667	91	11.20	70,435	100%	0.02	33,075	3,675
SB-106	0.1310	785	103	12.69	70,447	100%	0.01	33,860	3,762
SB-P	0.1300	210	27	3.37	70,451	100%	0.01	34,070	3,786
SB-20	0.1170	616	72	8.89	70,460	100%	0.01	34,685	3,854
SB-128	0.1110	253	28	3.46	70,463	100%	0.01	34,938	3,882
SB-194	0.0840	181	15	1.88	70,465	100%	0.01	35,119	3,902
SB-34	0.0790	365	29	3.56	70,469	100%	0.01	35,484	3,943
SB-90	0.0790	647	51	6.32	70,475	100%	0.01	36,132	4,015
SB-208	0.0780	303	24	2.92	70,478	100%	0.01	36,435	4,048
TSB-11	0.0730	1,610	118	14.51	70,492	100%	0.01	38,045	4,227
SB-92	0.0720	831	60	7.38	70,500	100%	0.01	38,876	4,320
SB-11	0.0650	532	35	4.27	70,504	100%	0.01	39,408	4,379
SB-B	0.0610	31	2	0.23	70,504	100%	0.01	39,439	4,382
SB-58	0.0600	44	3	0.33	70,505	100%	0.01	39,483	4,387
SB-35	0.0540	406	22	2.71	70,507	100%	0.01	39,889	4,432
SB-141	0.0420	1,025	43	5.31	70,513	100%	0.01	40,914	4,546
SB-210	0.0390	144	6	0.69	70,513	100%	0.01	41,058	4,562
SB-143	0.0380	879	33	4.12	70,517	100%	0.01	41,936	4,660
SB-104	0.0350	2,055	72	8.88	70,526	100%	0.01	43,991	4,888
SB-C	0.0340	908	31	3.81	70,530	100%	0.01	44,899	4,989
SB-39	0.0330	387	13	1.58	70,532	100%	0.01	45,286	5,032
SB-Q	0.0320	615	20	2.43	70,534	100%	0.00	45,901	5,100
SB-142	0.0300	421	13	1.56	70,536	100%	0.00	46,322	5,147
SB-132	0.0270	539	15	1.80	70,537	100%	0.00	46,861	5,207
TSB-28	0.0270	1,910	52	6.37	70,544	100%	0.00	48,771	5,419

APPENDIX B-12 AREA-WEIGHTED AVERAGE DETAILS CHLORDANE BETWEEN 2-5 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Chlordan	e 2-5 ft bgs		The	issen Polygo	on		_	Excav	ation
			Weighted	Mass/					
Soil Sample	Concentration	Area	Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID _	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	_(ft²)	(yd ³)
SB-36	0.0250	1,130	28	3.49	70,547	100%	0.00	49,901	5,545
SB-42	0.0214	1,112	24	2.94	70,550	100%	0.00	51,013	5,668
TSB-5	0.0200	1,915	38	4.73	70,555	100%	0.00	52,928	5,881
SB-190	0.0190	195	4	0.46	70,555	100%	0.00	53,123	5,903
SB-127	0.0185	560	10	1.28	70,557	100%	0.00	53,683	5,965
SB-185	0.0170	270	5	0.57	70,557	100%	0.00	53,954	5,995
SB-85	0.0162	315	5	0.63	70,558	100%	0.00	54,269	6,030
SB-209	0.0160	267	4	0.53	70,558	100%	0.00	54,536	6,060
SB-134	0.0141	185	3	0.32	70,559	100%	0.00	54,721	6,080
SB-49	0.0138	2,868	40	4.89	70,564	100%	0.00	57,589	6,399
SB-126	0.0129	727	9	1.16	70,565	100%	0.00	58,315	6,479
TSB-2	0.0127	2,184	28	3.42	70,568	100%	0.00	60,499	6,722
SB-96	0.0098	618	6	0.75	70,569	100%	0.00	61,117	6,791
SB-202	0.0095	157	1	0.18	70,569	100%	0.00	61,275	6,808
TSB-1	0.0086	1,723	. 15	1.83	70,571	100%	0.00	62,998	7,000
SB-101	0.0076	2,503	19	2.35	70,573	100%	0.00	65,501	7,278
SB-181	0.0035	2,424	8	1.05	70,574	100%	0.00	67,924	7,547
SB-195	0.0029	801	2	0.29	70,575	100%	0.00	68,725	7,636
SB-10	0.0024	865	2	0.26	70,575	100%	0.00	69,590	7,732
ND	0.0000	0	0	0.00	70,575	100%	0.00	69,590	7,732
ND	0.0000	0	0	0.00	70,575	100%	0.00	69,590	7,732
ND	0.0000	0	0	0.00	70,575	100%	0.00	69,590	7,732
ND	0.0000	0	0	0.00	70,575	100%	0.00	69,590	7,732
ND.	0.0000	0	0.000	0.00	70,575	100%		69,590	7,732
Total		69,590	571,632	70,575					

AWA - Area weighted average
Shaded cells indicate soil polygons to be removed via excavation

APPENDIX B-13 AREA-WEIGHTED AVERAGE DETAILS α-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

α-BHC 5	5-10 ft bgs	<u> </u>	Theis	sen Polygo	n			Excavation		
				Mass/			l	· . · · · ·		
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume	
ID	(mg/kg)	(ft ²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)	
No excavation			, , ,	150			0.040			
SB-105	0.1100	451	50	4.11	4	- ≥ 3%	0:039	1 1 451	₹ ³ 5 33	
SB-12	· 0:0120	63		0.06	4	3%	.∜.0:039	514	ু 38	
SB-150	1.7000	×149	253	20.92		17%	0.033	663		
SB-151	2.2000	155	. 341	28.25	÷ 53	36%	0.026		3 61	
SB-154	0.0620 U	220	14 C. 14	1:13	- 54	-36%	0.025	/;,1;038	13 P. 77	
SB-16	0.0120 I	<u>.</u> ∵.; ≎90	4.30.25.46	``0.09	55	36%	<i>:</i> ⊙•0.025	1,128 °,	· * 84	
SB-186	0.4700	129	**************************************	5.04	, 760	40%	∞ ≠ 0:024	1,257	93	
SB-187	0.0037 U 🕏	110	534 7354 0	0.03	<u> </u>	540%	∵.0.024	1,368	101	
SB-188	0.0510	%5≳141	大概的一颗位之	0.60	÷ 60 € 60	40%	0.024	. 1,509	े ं 112	
SBº189 🦠 🦠	~0:0036{U	154	江西等于最为1	0.05	60	40%	0.024	1,663	123	
SB-197	0:1900	206	\$ \$\$5. y \$2\$\$39	3.24	64	42%	,,0.023	1,869	7 138	
SB-199	> 0:3300	166	55	4:52	68	45%	ৣ៑0.022	2,034	151	
SB-205	≦ 20.0490	24	h \$ 1	₹ 70.10		45%	. 0.022	2,059	152	
SB-212	0.0340 U	216	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.61	69	46%	0.022	2,275	169	
SB-216 👙 💢	0:0980	424	42	3,44	72	48%	∴ 0.021	2,699	Ç 200	
SB-218	0.0200	> 833	17	্ 1.38	74	∓49%	0.020	3,532	262	
SB-219	0 0110	-∹-∵292		0.27		49%	* 0.020	3,824	283	
SB-28	⊙-0:0175 K	. ₹685	12	0:99	7.5	50%	0.020	4,510	334	
SB-29	7 0.0790	550	.43	3.60	78	.52%	0.019			
SB-83	0:6400	440	282	ু 23.32	102	્ર∴ે68%	0.013	5,500	407	
SB-97	0.1700	216	37,	3.05	105	70%	0.012	. 5,717	. 423	
SB-211	0.1300	615	80	6.62	111	74%	0.010	6,332	469	
SB-201	0.0950	137	13	1.08	112	75%	0.010	6,469	479	
SB-13	0.0899 K	571	51	4.25	117	78%	0.009	7,040	521	
SB-32	0.0850 K	581	49	4.09	121	80%	0.008	7,621	565	
SB-98	0.0720 1	543	39	. 3.24	124	83%	0.007	8,164	605	
SB-P	0.0660 1	210	14	1.15	125	83%	0.007	8,374	620	
SB-20	0.0620	616	38	3.16	128	85%	0.006	8,990	666	
SB-84	0.0450 I	466	21	1.73	130	87%	0.005	9,456	700	
SB-Q	0.0440	668	29	2.43	133	88%	0.005	10,123	750	
SB-95	0.0440	87	4	0.32	133	88%	0.005	10,211	756	
SB-206	0.0270	1,264	34	2.82	136	90%	0.004	11,475	850	
SB-153	0.0230	344	8		. 136	91%	0.004			
SB-190	0.0230	195	4	0.37	137	91%	0.004			
SB-80	0.0195 K	223	4	0.36	137	91%	0.003		906	
SB-33	0.0175 K	395	7	0.57	138	92%	0.003		936	
SB-78	0.0170 K	381	6	0.54	138	92%	0.003	13,012	964	
SB-45	0.0170 K	260	4	0.37	139	92%	0.003	13,272	983	
SB-B	0.0155 K	31	. 0	0.04	139	92%	0.003	13,303	985	
SB-8	0.0140	522	7	0.61	139	93%	0.003	13,825	1,024	
SB-31	0.0130 I	548	7	0.59	140	93%	0.003	14,372	1,065	
SB-58	0.0100 I	44	0	0.04	140	93%	0.003			
SB-48	0.0085 I	889	8	0.63	140	93%	0.003	15,305	1,134	

APPENDIX B-13 AREA-WEIGHTED AVERAGE DETAILS α -BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

α-BHC 5	-10 ft bgs		Theis	sen Polygo	n			Excavation	
	7			Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-213	0.0084	349	3	0.24	141	94%	0.003	15,654	1,160
SB-152	0.0063 I	317	2	0.17	141	94%	0.002	15,971	1,183
SB-202	0.0056	157	1	0.07	141	94%	0.002	16,128	1,195
SB-198	0.0056	160	1	0.07	141	94%	0.002	16,288	1,207
SB-C	0.0055 I	908	5	0.41	141	94%	0.002	17,196	1,274
SB-106	0.0051 I	1,722	9	0.73	142	95%	0.002	18,918	1,401
SB-210	0.0043	144	1	0.05	142	95%	0.002	19,062	1,412
SB-21	0.0040 U	1,123	4	0.37	143	95%	0.002	20,185	1,495
SB-96	0.0039 U	699	3	0.23	143	95%	0.002	20,884	1,547
SB-25	0.0039 U	1,393	5	0.45	143	95%	0.002	22,277	1,650
SB-99	0.0039 U	1,320	5	0.43	144	96%	0.002	23,597	1,748
SB-30	0.0039 U	802	3	0.26	144	96%	0.002	24,398	1,807
SB-209	0.0039 U	262	1	0.08	144	96%	0.002	24,660	1,827
SB-92	0.0038 U	831	3	0.26	144	96%	0.002	25,491	1,888
SB-14	0.0038 U	1,873	7	0.59	145	96%	0.001	27,364	2,027
SB-47	0.0038 U	354	1	0.11	145	96%	0.001	27,718	2,053
SB-185	0.0038 U	245	1	0.08	145	97%	0.001	27,963	2,071
SB-208	0.0038 U	188	1	0.06	145	97%	0.001	28,150	2,085
SB-10	0.0038 U	1,175	4	0.37	145	97%	0.001	29,325	2,172
SB-11	0.0038 U	565	2	0.18	146	97%	0.001	29,890	2,214
SB-102	0.0037 U	1,019	4	0.31	146	97%	0.001	30,909	2,290
SB-108	0.0037 U	496	2	0.15	146	97%	0.001	31,405	2,326
SB-27	0.0036 U	548	2	0.16	146	97%	0.001	31,953	2,367
SB-87	0.0036 U	101	0	0.03	146	97%	0.001	32,054	2,374
SB-46	0.0036 U	2,055	7	0.61	147	98%	0.001	34,109	2,527
SB-103	0.0036 U	1,830	7	0.55	147	98%	0.001	35,939	2,662
SB-109	0.0036 U	1,656	6	0.49	148	98%	0.001	37,595	2,785
SB-35	0.0036 U	996	4	0.30	148	99%	0.001	38,591	2,859
SB-195	0.0036 U	767	3	0.23	148	99%	0.000	39,359	2,915
SB-196	0.0036 U	447	2	0.13	149	99%	0.000	39,805	2,949
SB-217	0.0036 U	392	1	0.12	149	99%	0.000	40,197	2,978
SB-203	0.0035	155	1	0.04	149	99%	0.000	40,352	2,989
SB-191	0.0035 U	123	0	0.04	149	99%	0.000	40,476	2,998
SB-192	0.0035 U	110	0	0.03	149	99%	0.000		
SB-194	0.0035	173	1	0.05	149	99%	0.000	40,758	3,019
SB-49 SB-34	0.0035 U	2,490	9	0.72	150	100%	0.000	43,249	.3,204
SB-34 SB-26	0.0035 U 0.0035 U	408 87	0	0.12 0.03	150 150	100% 100%	0.000	43,657	3,234
SB-26 SB-193						100%	0.000	43,744	3,240
	0.0034 U	126	0	0.04	150		0.000	43,870	3,250
SB-200 SB-24	0.0034 U 0.0033 U	187	1	0.05 0.41	150 150	100% 100%	0.000	44,057 45,572	3,264
ND	0.0000	1,515 0	5 0	0.41	150	100%	0.000	45,572 45,572	
	0.0000		1,815	150	150	100%		73,372	3,376
Total	·	45,572	1,815	150					

AWA - Area weighted average

Shaded cells indicate soil polygons to be removed via excavation

APPENDIX B-14 AREA-WEIGHTED AVERAGE DETAILS β-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

6-BHC 5	-10 ft bgs	<u> </u>	Theis	sen Polygo	าก	<u></u>		Excar	vation
p-8/15 t	10111230	<u> </u>		Mass/	T	Γ	1		
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)	Ĺ	(mg/kg)	(ft²)	(yd ³)
No excavation	fear management	Institution of the	Inc. Trade Late and American	248		T v 5	0.030	e a sie azi zie	I 5 560 = =
SB-105	0.2100	451	95	7.84	8	3% بے بے	0:029		
SB-12	0.1400	. 63	9	0.73	9		0:029	514	38
SB-150	0.9100	· 149	\$ \$ 1.0 A 135	11.20	20	. 8%	∴ ; 0:028	663	图 第49
SB-151	2:5000	155	388	32.10	52	21%	0.024	818	ેં}∞ 61
SB-154	2.10.2900	220	64	1.29 ± 5.29	57	23%	∴ - 0.023	1;038	7.7
SB-16	0.1700	90	.71	1.26		24%	0:023	1,128	84
SB-186	. 3 .0.7900 ₹	:./_:129	102	8.46	.67	∴% 27%	0.022	1,257	. 93
SB-187	0.0023 U	110	\$ X 20	0:02	67	. 27%	0.022	1,368	∴ 101
SB-188	0.0023≥U	. juy141	10.0		67	₹. ∙27 %	0!022	,1,509	<u> </u>
SB-189	0.0022 U	∵ 154	0	: 0.03	67	27%	0:022	∂⇒.1,663	123
SB-197	0.2800	206	35.58	4.77	⊘72	29%	0.022	1,869	ીં ે 138
SB-199	0.2100	- 166	35	2.88		30%	0.021	2,034	. ∄≎≦151
SB-204	0.1200 o	115	14	1.14		31%	· 0.021	2,149	159
SB-205	0.4600	24	11	∴ 0.93		31%	_ 0.021	∴, 2,173	161
SB-212	0:0210 U	7. 216	5	0.38		ुं∴ 31%	ું ∍0.021	., 2,390	3 \ 177
SB-214	0.2400	293	. 70	5.82	83	33%	0.020	2,683	199
SB-215	0.1800.	283	二 广泛 (A) (4) 51	4.21	87 .	35%	0.020	¿ 2,965	:: ±220
SB-216%::	1.0000	424	424	35:10	,122	49%	0.015	.⊱3,390	251
SB-218	0.2100	· 833	194 M . 19175	14.48	జ్ఞమ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ్మ	<i>,</i> ∴∴∴55%	·> 0.014	4,223	
SB-219	0.1800	• 292	53	4.35	- 第141	57%	0.013	∴a;,4;515	~~~ "334
SB-28	0.0105 K	· - ⇔ 685	170 A 430 7	⊧ ≥ 0.60	-142	1.57%	. 0.013	5,200	385
SB-29	0.0105 K	550	6	0.48	142	57%	0.013	5,750	, 426
SB-83	0.0110 K	୍କି ୍ଲ 440	j., 🧼 💢 5	0.40	142	.∵57%	0.013	6,190	459
SB-97	**0:0023**U	216	が、 はない。	0.04	143	57%	0.013	6,407	475
TSB-18	0.2600	1,361	354	29.29	172	69%	0.009	7,768	575
SB-80	0.2000	223	45	3.69	176	71%	0.009	7,991	592
SB-P	0.1300	210	27	2.26	178	72%	0.009	8,201	608
SB-87	0.1200	101	12	1.00	179	72%	0.009	8,302	615
SB-152	0.0890	317	28	2.34	181	73%	0.008	8,619	638
SB-20	0.0820	616	50	4.18	185	75%	0.008	9,235	684
SB-190	0.0740	195	14	1.19	186	75%	0.008	9,430	698
SB-203	0.0650	155	10	0.84	187	75%	0.007	9,585	710
SB-194	0.0620	173	11	0.89	188	76%	0.007	9,758	723
SB-18	0.0610	72	4	0.36	189	76%	0.007	9,830	728
SB-211	0.0580	615	36	2.95	192	77%	0.007	. 10,445	774
SB-13	0.0558 K	571	32	2.64	194	78%	0.007	11,016	816
SB-96	0.0520	699	36	3.01	197	79%	0.006	11,716	
SB-32	0.0500 K	581	29	2.40	200	80%	0.006	12,297	911
SB-213	0.0470	349	16	1.36	201	81%	0.006	12,645	937
SB-201	0.0460 U	137	6	0.52	201	81%	0.006	12,782	947
SB-Q	0.0400	668	27	2.21	204	82%	0.005	13,450	996
SB-23	0.0360	2,534	91	7.55	211	85%	0.005	15,984	1,184
SB-22	0.0360	977	35	2.91	214	86%	0.004	16,960	1,256
SB-11	0.0340	565	19	1.59	216	87%	0.004	17,526	

APPENDIX B-14 AREA-WEIGHTED AVERAGE DETAILS β-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

β-BHC 5	i-10 ft bgs			Excavation					
				sen Polygo Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-191	0.0310	123	4	0.32	216	87%	0.004	17,649	1,307
SB-217	0.0300	392	12	0.97	217	87%	0.004	18,040	1,336
SB-19	0.0280	638	18	1.48	218	88%	0.004	18,678	1,384
SB-58	0.0270	44	1	0.10	219	88%	0.004	18,722	1,387
SB-153	0.0240	344	8	0.68	219	88%	0.004	19,066	1,412
SB-202	0.0220	157	3	0.29	220	88%	0.004	19,224	1,424
SB-92	0.0200	831	17	1.37	221	89%	0.003	20,055	1,486
SB-21	0.0200	1,123	22	1.86	223	90%	0.003	21,178	1,569
SB-106	0.0180	1,722	31	2.57	225	91%	0.003	22,900	1,696
SB-210	0.0180	144	3	0.21	226	91%	0.003	23,043	1,707
SB-39	0.0150	387	6	0.48	226	91%	0.003	23,431	1,736
SB-95	0.0150	87	1	0.11	226	91%	0.003	23,518	1,742
SB-10	0.0130	1,175	15	1.26	227	92%	0.003	24,693	1,829
SB-198	0.0130	160	2	0.17	228	92%	0.003	24,853	1,841
SB-84	0.0115 K	466	5	0.44	228	92%	0.002	25,318	1,875
SB-192	0.0110	110	1	0.10	228	92%	0.002	25,428	1,884
SB-17	0.0110	645	7	0.59	229	92%	0.002	26,073	1,931
SB-33	0.0110 K	395	4	0.36	229	92%	0.002	26,468	1,961
SB-98	0.0105 K	543	. 6	0.47	230	92%	0.002	27,011	2,001
SB-78	0.0105 K	381	4	0.33	230	93%	0.002	27,392	2,029
SB-45	0.0105 K	260	3	0.23	230	93%	0.002	27,652	2,048
SB-108	0.0099	496	5	0.41	231	93%	0.002	28,148	2,085
SB-B	0.0095 K	31	0	0.02	231	93%	0.002	28,178	2,087
SB-196	0.0078	447	3	0.29	231	93%	0.002	28,625	2,120
SB-14	0.0072 1	1,873	13	1.12	232	93%	0.002	30,499	2,259
SB-35	0.0069	996	7	0.57	233	94%	0.002	31,495	2,333
SB-40	0.0068 I	1,096	7	0.62	233	94%	0.002	32,591	2,414
SB-38	0.0065 I	1,114	7	0.60	234	94%	0.002	33,705	2,497
TSB-26	0.0063 K	1,069	7	0.55	234	94%	0.002	34,773	2,576
SB-8	0.0061 K	522	3	0.26	235	94%	0.002	35,296	2,614
TSB-9	0.0047	2,600	12	1.01	236	95%	0.002	37,895	2,807
SB-103	0.0045 1	1,830	8	0.68	236	95%	0.001	39,726	2,943
TSB-15	0.0040	1,594	6	0.53	237	95%	0.001	41,320	3,061
SB-102	0.0032 I	1,019	3	0.27	237	95%	0.001	42,339	3,136
SB-195	0.0027	767	2	0.17	237	96%	0.001	43,106	
SB-27	0.0026 I	548	1	0.12	237	96%	0.001	43,654	3,234
TSB-29	0.0026	1,946	5	0.42	238	96%	0.001	45,600	3,378
SB-101	0.0026 1	2,745	7	0.59	238	96%	0.001	48,345	
TSB-31	0.0025 U	2,322	6	0.48	239	96%	0.001	50,667	3,753
TSB-25	0.0025 U	1,639	4	0.34	239	96%	0.001	52,306	
TSB-27	0.0025 K	771	2	0.16	239	96%	0.001	53,077	3,932
TSB-30	0.0025 U	1,984	5	0.41	240	97%	0.001	55,061	4,079
TSB-14	0.0025 U	1,970	5	0.41	240	97%	0.001	57,031	4,225
TSB-5	0.0025 U	1,915	5	0.40	241	97%	0.001	58,946	
TSB-28	0.0025 U	1,910	5	0.40	241	97%	0.001	60,856	4,508

APPENDIX B-14 AREA-WEIGHTED AVERAGE DETAILS β-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

B-BHC 5	5-10 ft bgs		Theie	sen Polygo	n			Excavation	
F-5.1.5 S			,	Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Агеа	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
TSB-1	0.0025 U	1,723	4	0.36	241	97%	0.001	62,579	4,635
TSB-10	0.0025 U	1,616	4	0.33	242	97%	0.001	64,195	4,755
TSB-11	0.0025 U	1,610	4	0.33	242	97%	0.001	65,806	4,874
TSB-19	0.0025 U	1,609	4	0.33	242	98%	0.001	67,415	4,994
TSB-23	0.0025 U	1,593	4	0.33	243	98%	0.001	69,008	5,112
TSB-16	0.0025 U	1,590	4	0.33	243	98%	0.001	70,598	5,230
TSB-24	0.0025 U	1,460	4	0.30	243	98%	0.001	72,059	5,338
TSB-20	0.0025 U	1,407	4	0.29	244	98%	0.001	73,466	5,442
TSB-22	0.0025 U	1,278	3	0.26	244	98%	0.001	74,744	5,537
SB-184	0.0025 U	3,008	8	0.62	244	98%	0.000	77,752	5,759
SB-99	0.0024 U	1,320	3	0.26	245	99%	0.000	79,072	5,857
SB-93	0.0024 U	815	2	0.16	245	99%	0.000	79,886	5,918
SB-30	0.0024 U	802	2	0.16	245	99%	0.000	80,688	5,977
SB-209	0.0024 U	262	1	0.05	245	99%	0.000	80,950	5,996
SB-185	0.0024 U	245	1	· 0.05	245	99%	0.000	81,194	6,014
SB-104	0.0023 U	2,225	5	0.42	246	99%	0.000	83,420	6,179
SB-42	0.0023 U	2,060	5	0.39	246	99%	0.000	85,480	6,332
SB-C	0.0023 U	908	2	0.17	246	99%	0.000	86,387	6,399
SB-44	0.0023 U	828	2	0.16	246	99%	0.000	87,216	6,460
SB-47	0.0023 U	354	1	0.07	246	99%	0.000	87,570	6,487
SB-208	0.0023 U	188	0	0.04	246	99%	0.000	87,757	6,501
SB-109	0.0022 U	1,656	4	0.30	247	99%	0.000	89,413	6,623
SB-100	0.0022 U	1,220	3	0.22	247	99%	0.000	90,632	6,714
SB-43	0.0022 U	1,212	3	0.22	247	100%	0.000	91,844	6,803
SB-37	0.0022 U	1,040	2	0.19	247	100%	0.000	92,884	6,880
SB-36	0.0022 U	755	2	0.14	247	100%	0.000	93,639	6,936
SB-193	0.0021 U	. 126	0	0.02	247	100%	0.000	93,766	6,946
SB-24	0.0021 U	1,515	3	0.26	248	100%	0.000	95,280	7,058
SB-15	0.0021 U	1,420	3	0.25	248	100%	0.000	96,701	7,163
SB-34	0.0021 U	408	1	0.07	248	100%	0.000	97,109	7,193
SB-206	0.0021 U	1,264	3	0.22	248	100%	0.000	98,373	7,287
SB-200	0.0021 U	187	0	0.03	248	100%	0.000	98,560	7,301
ND	0.0000	0	0	0.00	248	100%	0.000	98,560	7,301
ND	0.0000	0	0	0.00	248	100%	0.000	98,560	7,301
ND	0.0000	0	0	0.00	248	100%	0.000	98,560	7,301
ND	0.0000	0	0	0.00	248	100%	0.000	98,560	7,301
ND	0.0000	0	0	0.00	248	100%		98,560	7,301
Total		98,560	3,000	248					

AWA - Area weighted average

Shaded cells indicate soil polygons to be removed via excavation

APPENDIX B-15 AREA-WEIGHTED AVERAGE DETAILS δ-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

δ-BHC 5	-10 ft bgs		Theis	sen Polygo	n			Exca	vation
				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
No excavation				336			0.052		
SB-105_:: 🍱	0.2600	451	是50次的2017。	9.71	严 法 10		0.051	451	25.5.233
SB-12	0.0320	% €63	2	多数0.47		14.3%		514	³⁸ : 1438
SB-150	0.7000	<u>. </u>	104	8.61	. 48		0.049	- 663	::49
SB-151	0.6800	F155	106	8.73	27		₹4% 0.048	. 818	¥ 61
SB-154	- 0.1300 T	220	1.	2.37	. 30	the state of the s	0.048	1,038	<i>?>-</i> 77.
SB-16	0.0460	. ≎∃,90	英国法国法院第4	7. 0.34		⊊ <u>,</u> ≰%;9%	0.048	1 ₁ 128	84
SB-186	2.0000	129	259	21.43	÷. 51	15%	· , .0.044	√⊱1,25 7	<i>3</i> . ~ 93
SB-187	2.3000 K	- 110	253	20.97	72	: 22%	0.041	91,368	3101
SB-188, 📆 📑	0.2000	141	28	2:34	7.5	22%	···· 0.041	1,509	
SB-189	1.5000	ু ্ 154	231	. 19.12	94	-, 28%	0.038	. 41,663	123
SB-197	0.3700	206	₹76	6.30	<i>∴</i>	30%	0.037	1,869	138
SB-199	0.4500	∴ > 166	775	6.17	106		-0.036	2,034	151
SB-204	0.0029 U.T	× 5.115		0.03	106		0.036	2,149	∰ 159 159
SB-205	0.1500	. 24	4	0.30	107	32%	0.036	÷2,173	***
SB-212 🐎 🚉	5.0000	216	1,082	89:54	196	∴ 58%	0:022	. 2;390	177
SB-214	0:0054	293	2	0.13	196	. ₹58%	0.022	2,683	199
SB-215	0.0078 K√	∕∵⊼.283	2	0:18	196	<u>259%</u>	0.022	2,965	220
SB-216 3.	0.5000	- 5 424	212	17:55	214	64%	0.019	3,390	251
SB-218	0.0450	₹ ,833	38	3.10	217	∴ €65%	0.018	4,223	.±. 313
SB-219	· 0.0210	292	6	0.51	218	65%	- 0.018	4,515	334
SB-28	0.0130 K	- 685	9	0.74	218	65%	0.018	5,200	385
SB-29	0.0130 K	-√ 550 - √ 440		0:59	219	65%	<i>○</i> 0.018	5,750	426
SB-83	0.4800	7	211	17:49	236	70%	0.015		
1111111111	0.7700	216	<u> </u>	⊰∴ ≠ 0.05	236	70%	0.015	6,407	
SB-98	0.7700	543	418	34.62	271 272	81% 81%	0.010	6,950	515
SB-58	0.1300	44	6 74	0.48 6.11	272	83%	0.010	6,994	518
SB-211 SB-47	0.1200	615			281	84%	0.009	7,609	564
SB-20		354	42	3.51 3.87	285	85%		7,963	590 635
SB-13	0.0760 K 0.0682 K	616 571	39	3.07	288	86%	0.008	8,579 9,150	678
SB-32	0.0650 K	581	38	3.12	291	87%	0.007	9,731	721
SB-201	0.0560 U	137	8	0.64	291	87%	0.007	9,731	721
SB-87	0.0560	101	6	0.64	293	87%	0.007	9,969	738
SB-153	0.0490	344	17	1.39	293	88%	0.007	10,313	764
SB-217	0.0490	392	16	1.39	295	88%	0.006		793
SB-45	0.0400	260	10	0.86	295	88%	0.006		
SB-14	0.0320	1,873	60	4.96	301	90%	0.005	12,838	
SB-Q	0.0320	668	21	1.71	303	90%	0.005	13,505	
SB-44	0.0280	828	23	1.92	305	91%	0.005	14,334	1,062
SB-104	0.0270	2,225	60	4.97	310	92%	0.004	16,559	
SB-35	0.0200	996	20	1.65	311	93%	0.004	17,555	1,300
SB-210	0.0190	144	3	0.23	312	93%	0.004	17,698	1,311
SB-26	0.0180 K	87	2	0.13	312	93%	0.004	17,785	
SB-92	0.0170	831	14	1.17	313	93%	0.004	18,616	
SB-8	0.0170	522	9	0.73	314	93%	0.003	19,138	
SB-193	0.0150 K	126	2	0.16		93%	0.003	19,264	
SB-84	0.0145 K	466		0.56		94%	0.003	19,730	

APPENDIX B-15 AREA-WEIGHTED AVERAGE DETAILS δ-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

8-BHC 5	i-10 ft bgs		Theis	sen Polygo	· · · · · · · · · · · · · · · · · · ·		7	Exca	vation
1 0 0 0 0	10.11.290			Mass/					1
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-80	0.0145 K	223	3	0.27	315	94%	0.003	19,953	1,478
SB-213	0.0140	349	5	0.40	315	94%	0.003	20,302	1,504
SB-198	0.0140	160	2	0.19	315	94%	0.003	20,462	1,516
SB-P	0.0135 K	210	3	0.23	315	94%	0.003	20,672	1,531
SB-33	0.0135 K	395	5	0.44	316	94%	0.003	21,067	1,561
SB-190	0.0130	195	3	0.21	316	94%	0.003	21,262	1,575
SB-95	0.0130	87	1	0.09	316	94%	0.003	21,349	1,581
SB-78	0.0130 K	381	5	0.41	317	94%	0.003	21,730	1,610
SB-B	0.0120 K	31	0	0.03	317	94%	0.003	21,760	1,612
SB-152	0.0110	317	3.	0.29	317	94%	0.003	22,077	1,635
SB-40	0.0110 I	1,096	12	1.00	318	95%	0.003	23,173	1,717
SB-194	0.0100 K	173	2	0.14	318	95%	0.003	23,346	1,729
SB-10	0.0100	1,175	12	0.97	319	95%	0.003	24,521	1,816
SB-39	0.0086 I	387	3	0.28	319	95%	0.003	24,908	1,845
SB-18	0.0084 I	72	. 1	0.05	319	95%	0.003	24,980	1,850
SB-96	0.0081 I	699	6	0.47	320	95%	0.002	25,680	1,902
SB-21	0.0077 1	1,123	9	0.72	320	96%	0.002	26,803	1,985
SB-192	0.0074	110	1	0.07	321	96%	0.002	26,912	1,994
SB-101	0.0072 I	2,745	20	1.64	322	96%	0.002	29,657	2,197
SB-30	0.0070 1	802	6	0.46	323	96%	0.002	30,459	2,256
SB-184	0.0068	3,008	20	1.69	324	97%	0.002	33,467	2,479
SB-38	0.0067 1	1,114	7	0.62	325	97%	0.002	34,581	2,562
SB-19	0.0061 l	638	4	0.32	325	97%	0.002	35,219	2,609
SB-191	0.0058	123	1	0.06	325	97%	0.002	35,342	2,618
SB-106	0.0054	1,722	9	0.77	326	97%	0.001	37,064	2,746
SB-11	0.0047	565	3	0.22	326	97%	0.001	37,630	2,787
SB-202	0.0043	157	1	0.06	326	97%	0.001	37,787	2,799
SB-23	0.0039 I	2,534	10	0.82	327	98%	0.001	40,321	2,987
SB-C	0.0034 1	908	3	0.26	327	98%	0.001	41,229	3,054
SB-31	0.0030 U	548	2	0.14	328	98%	0.001	41,776	3,095
SB-93	0.0030 U	815	2	0.20	328	98%	0.001	42,591	3,155
SB-25	0.0029 U	1,393	4	0.33	328	98%	0.001	43,984	3,258
SB-99	0.0029 U	1,320	4	0.32	328	98%	0.001	45,303	3,356
SB-209	0.0029 U	262	1	0.06	328	98%	0.001	45,565	3,375
SB-185	0.0029 U	245	1	0.06	329	98%	0.001	45,810	3,393
SB-208	0.0029 U	188	1	0.05	329	98%	0.001	45,997	3,407
SB-102	0.0028 U	1,019	3	0.24	329	98%	0.001	47,017	3,483
SB-27	0.0028 U	548	2	0.13	329	98%	0.001	47,565	3,523
SB-108	0.0028 U	496	1	0.11	329	98%	0.001	48,061	3,560
SB-42	0.0028 U	2,060	6	0.48	330	98%	0.001	50,121	3,713
SB-103	0.0028 U	1,830	5	0.42	330	98%	0.001	51,951	3,848
SB-109	0.0028 U	1,656	5	0.38	330	98%	0.001	53,607	3,971
SB-43	0.0028 U	1,212	3	0.28	331	99%	0.001	54,819	4,061
SB-48	0.0028 U	889	2	0.21	331	99%	0.001	55,707	4,126
SB-17	0.0028 U	645	2	0.15	331	99%	0.001	56,352	4,174
SB-203	0.0027 U	155	0	0.03	331	99%	0.001	56,508	4,186
SB-46	0.0027 U	2,055	6	0.46	331	99%	0.001	58,563	4,338
SB-88	0.0027 U	1,816	5	0.41	332	99%	0.001	60,378	4,472

APPENDIX B-15 AREA-WEIGHTED AVERAGE DETAILS δ-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

δ-BHC 5	-10 ft bgs		Theis	sen Polygo	n			Exca	ation
-				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-100	0.0027 U	1,220	3	0.27	332	99%	0.001	61,598	4,563
SB-37	0.0027 U	1,040	3	0.23	332	99%	0.000	62,638	4,640
SB-22	0.0027 U	977	3	0.22	333	99%	0.000	63,614	4,712
SB-36	0.0027 U	755	2	0.17	333	99%	0.000	64,370	4,768
SB-195	0.0027 U	767	2	0.17	333	99%	0.000	65,137	4,825
SB-196	0.0027 U	447	1	0.10	333	99%	0.000	65,584	4,858
SB-2	0.0026 U	626	2	0.14	333	99%	0.000	66,210	4,904
SB-34	0.0026 U	408	1	0.09	333	99%	0.000	66,618	4,935
SB-200	0.0026 U	187	0	0.04	333	99%	0.000	66,806	4,949
TSB-18	0.0025 U	1,361	3	0.28	334	99%	0.000	68,167	5,049
TSB-9	0.0025 U	2,600	6	0.54	334	100%	0.000	70,767	5,242
TSB-1	0.0025 U	1,723	4	0.36	334	100%	0.000	72,489	5,370
SB-24	0.0025 U	1,515	4	0.31	335	100%	0.000	74,004	5,482
SB-15	0.0025 U	1,420	4	0.29	335	100%	0.000	75,424	5,587
TSB-27	0.0025 K	771	2	0.16	335	100%	0.000	76,195	5,644
SB-206	0.0025 U	1,264	3	0.26	336	100%	0.000	77,459	5,738
ND	0.0000	. 0	0	0.00	336	100%	0.000	77,459	5,738
ND	0.0000	0	0	0.00	336	100%	0.000	77,459	5,738
ND	0.0000	0	0	0.00	336	100%	0.000	77,459	5,738
ND	0.0000	0	0	0.00	336	100%		77,459	5,738
Total		77,459	4,054	336					

AWA - Area weighted average

Shaded cells indicate soil polygons to be removed via excavation

APPENDIX B-16 AREA-WEIGHTED AVERAGE DETAILS γ-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

y-BHC 5	i-10 ft bgs	<u> </u>	Their	sen Polygo	on .			Exca	ation
, ,,,,,,,,,				Mass/		T			
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft ² -mg/kg)	(grams)	(grams)		(mg/kg)	(ft ²)	(yd³)
No excavation				546			0.090		
SB-105	· 0.1200	451	54	4.48	4	3-1-1%	0.090	√_≲451	
SB-12	0.0180	. 63	To produce the	0.09	是 经企业5	1,%	0:090	; ∕ _≫ , 514	沙兰 38
SB-150	21.0000	**: 149	. 3,122	258:39	263	³ ∵ 48%	0.047	663	∵,∵49
SB-151	0.7600	155	·新、新香。118	9.76	273	. 50%	.0.045	. ≭ ↓818	-:, ≯ 61
SB-154**	0.0130 U	220	學是一個學生	0.24	, 273	50%	0.045	7,1,038	15 x 277
SB-16	0.0350	强 90	3 3 3	0.26	273	50%	× 0.045	1,128	. 84
SB-186	0.7500	129	97.	8.03		52%	:r.∷0.044	. 1,257	· 33
SB-187 展//含	1:1000 Add	%_3110	57.121	10.03	291	.53%	0.042	1,368	101
SB-188"	-0.9600	141	136	11.23	303	.:t,:: 55%	0:040	1,509	112
SB-189	1.9000	y - 154	2 22 25 293	24.22	327	60%	0.036	1,663	123
SB-197	· * 0.0078∙U %	206	2	, · 0/13	327	60%	0.036	1,869	138
SB-199	0.0077 U#	166	HEROTO TOUR	0.11	327	60%	0.036	2,034	151
SB-204	0.0140	115		0.13		್∴ 60%	0.036	2,149	159
SB-205	0.3200	- 24	\$ 2 C + C + C + C + C + C + C + C + C + C	0.64	328	60%	5 0.036	2,173	14.4.3161
SB-212	- 0.0071 U	216		<i>⊹. ⊹</i> . 20:13	328	60%	. 0.036	2,390	177
SB-214	0.0110	. 293	3	0:27	328	60%	_0.036	2,683	199
SB-215	0:0410	283	: 12	0.96	329	60%	0.036	2,965	⁺
SB-216	0.0830 K	: 424	きょ <u>が</u> できた。 35	2.91	332	61%	0.035	-}∴3;390	251
SB-218	0.0410	833		2.83	335	-≩ 61%	0.035	4;223	- 313
SB-219	∌ ੇ0:0093ੀ ੈਂ ੈਂ	292	3	0.22	335	<i>ೆ</i> : 61%	0.035	4,515	334
SB-28	0.3400	685	233	19.29	354	<i>ે</i> ંુ 65%	.0.032	5,200	385
SB-29	1 1000	550	605	50.09	404	74%	0.023		*426
SB-83	0.2700	440	1119	9.84	ં કેવુંદ્ર, 414	∵∴ 76%	0:022	6,190	459
SB-97.	0.1200	216	26	2.15	्र ्रें 🛴 र 416	∵∘., 76%	0.021	. 6,407	475
SB-32	0.6300	581	366	30.28	447	82%	0.016	6,988	518
SB-201	0.4100	137	56	4.65	451	83%	0.016	7,125	528
SB-48	0.1800	889	160	13.24	465	85%	0.013	8,013	594
SB-25	0.1500	1,393	209	17.29	482	88%	0.011	9,406	697
SB-46	0.1200	2,055	247	20.41	502	92%	0.007	11,461	849
SB-45	0.1100	260	29	2.37	505	92%	0.007	11,721	868
SB-31	0.0860	548	47	3.90	509	93%	0.006	12,269	909
SB-33	0.0830	395	33	2.71	511	94%	0.006	12,664	938
SB-92	0.0670	831	56	4.61	516	95%	0.005	13,494	1,000
TSB-18	0.0460	1,361	63	5.18	521	95%	0.004	14,856	1,100
SB-44	0.0460	828					0.004		
SB-20	0.0440	616	27	2.24	526	96%	0.003		1,207
SB-30	0.0430	802	34	2.85	529	97%	0.003		1,267
SB-190	0.0280	195	5	0.45	530	97%	0.003		
SB-34	0.0280	408	11	0.95		97%	0.002	<u> </u>	
SB-152	0.0240 K	317	8	0.63	531	97%	0.002	18,022	1,335
SB-211	0.0190	615	12	0.97	532	98%	0.002	18,637	1,380
SB-13	0.0186 K	571	11	0.88	533	98%	0.002		
SB-213	0.0130 K	349	. 5	0.38	534	98%	0.002		1,449
SB-19	0.0120	638	8	0.63	534	98%	0.002		
TSB-9	0.0120	2,600	31	2.58	537	98%	0.001	22,794	
SB-202	0.0110	157	2	0.14		98%	0.001	22,952	
SB-17	0.0078	645	5	0.42	537	98%	0.001	23,597	1,748

APPENDIX B-16 AREA-WEIGHTED AVERAGE DETAILS γ-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

у-ВНС 5	-10 ft bgs		Theis	sen Polygo	on			Excav	ation
	-			Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd³)
SB-104	0.0059	2,225	13	1.09	538	99%	0.001	25,822	1,913
SB-23	0.0044 K	2,534	11	0.92	539	99%	0.001	28,356	2,100
SB-80	0.0040 K	223	1	0.07	539	99%	0.001	28,579	2,117
SB-96	0.0040	699	3	0.23	540	99%	0.001	29,278	2,169
SB-22	0.0040	977	4.	0.32	540	99%	0.001	30,255	2,241
SB-84	0.0039 K	466	2	0.15	540	99%	0.001	30,720	2,276
SB-P	0.0036 K	210	1	0.06	540	99%	0.001	30,931	2,291
SB-98	0.0036 K	543	2	0.16	540	99%	0.001	31,474	2,331
SB-78	0.0036 K	381	1	0.11	540	99%	0.001	31,855	2,360
SB-B	0.0033 K	31	0	0.01	540	99%	0.001	31,885	2,362
SB-21	0.0030	1,123	3	0.28	541	99%	0.001	33,008	2,445
SB-18	0.0029 I	72	0	0.02	541	99%	0.001	33,080	2,450
SB-194	0.0028	173	0	0.04	541	99%	0.001	33,253	2,463
TSB-27	0.0025 K	771	. 2	0.16	541	99%	0.001	34,024	2,520
TSB-14	0.0025 U	1,970	5	0.41	541	99%	0.001	35,994	2,666
TSB-5	0.0025 U	1,915	. 5	0.40	542	99%	0.001	37,910	2,808
TSB-1	0.0025 U	1,723	4	0.36	542	99%	0.001	39,632	2,936
TSB-10	0.0025 U	1,616	4	0.33	542	99%	0.001	41,248	3,055
TSB-19	0.0025 U	1,609	4	0.33	543	99%	0.000	42,858	3,175
SB-24	0.0025 U	1,515	4	0.31	543	100%	0.000	44,373	3,287
TSB-22	0.0025 U	1,278	3	0.26	543	100%	0.000	45,651	3,382
SB-106	0.0023 I	1,722	4	0.33	544	100%	0.000	47,373	3,509
SB-103	0.0022 1	1,830	4	0.33	544	100%	0.000	49,203	3,645
SB-8	0.0020 K	522	1	0.09	544	100%	0.000	49,726	3,683
SB-11	0.0020	565	1	0.09	544	100%	0.000	50,291	3,725
SB-39	0.0018 i	387	1	0.06	544	100%	0.000	50,678	3,754
SB-93	0.0008 U	815	1	0.05	544	100%	0.000	51,493	3,814
SB-99	0.0008 U	1,320	1	0.09	544	100%	0.000	52,812	3,912
SB-209	0.0008 U	262	0	0.02	544	100%	0.000	53,074	3,931
SB-58	0.0008 U	44	. 0	0.00	544	100%	0.000	53,118	3,935
SB-87	0.0008 U	101	0	0.01	544	100%	0.000	53,219	3,942
SB-10	0.0008 U	1,175	1	0.08	545	100%	0.000	54,393	4,029
SB-C	0.0008 U	908	1	0.06	545	100%	0.000	55,301	4,096
SB-47	0.0008 U	354	0	0.02	545	100%	0.000	55,655	4,123
SB-Q	0.0008 U	668	1	0.04	545	100%	0.000	56,323	4,172
SB-95	0.0008 U	87	0	0.01	545	100%	0.000	56,410	4,179
SB-108	0.0008 U	496	0	0.03	545	100%	0.000	56,906	4,215
SB-27	0.0008 U	548	0	0.03	545	100%	0.000	57,454	4,256
SB-153	0.0008 U	344	0	0.02	545	100%	0.000	57,798	
SB-109	0.0008 U	1,656	1	0.10	545	100%	0.000	59,453	
SB-43	0.0008 U	1,212	.1	. 0.08	545	100%	0.000	60,665	
SB-35	0.0008 U	996	1	0.06		100%	0.000	61,661	
SB-217	0.0008 U	392	0	0.02		100%	0.000	62,053	4,597
SB-36	0.0007 U	755	1	0.05	545	100%	0.000	62,808	4,652
SB-195	0.0007 U	767	1	0.05	545	100%	0.000	63,576	
SB-196	0.0007 U	447	0	0.03	545	100%	0.000	64,023	
SB-203	0.0007 U	155	0	0.01	545	100%	0.000	64,178	
SB-49	0.0007 U	2,490	2	0.15		100%	0.000	66,668	

APPENDIX B-16 AREA-WEIGHTED AVERAGE DETAILS γ-BHC BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

γ-BHC 5	i-10 ft bgs		Theis	sen Polygo	n		***	Excavation	
		_		Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
SB-37	0.0007 U	1,040	1	0.06	545	100%	0.000	67,708	5,015
SB-198	0.0007 U	160	0	0.01	545	100%	0.000	67,868	5,027
SB-191	0.0007 U	123	0	0.01	545	100%	0.000	67,991	5,036
SB-88	0.0007 U	1,816	1	0.11	545	100%	0.000	69,807	5,171
SB-100	0.0007 U	1,220	1	0.07	546	100%	0.000	71,027	5,261
SB-26	0.0007 U	87	0	0.01	546	100%	0.000	71,113	5,268
SB-192	0.0007 U	110	0	0.01	546	100%	0.000	71,223	5,276
SB-200	0.0007 U	187	0	0.01	546	100%	0.000	71,410	5,290
SB-193	0.0007 U	126	0	0.01	546	100%	0.000	71,537	5,299
SB-206	0.0007 U	1,264	1	0.07	546	100%	0.000	72,801	5,393
SB-185	0.0007 U	245	0	0.01	546	100%	0.000	73,045	5,411
ND ·	0.0000	0	Ō	0.00	546	100%	0.000	73,045	5,411
ND	0.0000	0	0	0.00	546	100%	0.000	73,045	5,411
ND	0.0000	0	0	0.00	546	100%	0.000	73,045	5,411
ND	0.0000	. 0	0	0.00	546	100%	0.000	73,045	5,411
ND	0.0000	. 0	0	0.00	546	100%		73,045	5,411
Total		73,045	6,593	546					

AWA - Area weighted average

Shaded cells indicate soil polygons to be removed via excavation

APPENDIX B-17 AREA-WEIGHTED AVERAGE DETAILS TOXAPHENE BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Toxaphene	5-10 ft bgs			Theissen Po	ygon	· <u>-</u> .		Exca	ation
				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID .	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)		(mg/kg)	(ft²)	(yd ³)
No Excavation	(99/	_(10)	(it -ing/kg)	9,296	(3.4)		3.04	(1.7	
SB-12	240:2300sus	63	614		848(848 28 4)	*注事.0%		63	J. 54 25
SB-150 (**)	> 5:2000 JUK	1 149	3 7 3 5 3 773		65	***1%		211	22.16
SB-151		4 1155	388		34.97	ST 6.7351%			5 2 27
SB-154% ***	4 8000 U		12 3 7 161,058			2%		£587.	43
- A. F. VAN - P. 1 F.	2.0000		£180		200	2%2%			55.550
SB-199%	2/9000 U				239			34 842	62
SB-204 34.88	2.0000		195 - 1 1 E 230					ACCEST 1270	A 7.1
SB-205	∭0.2900 U ≰	₩/>¥24	V. 106.57		A 14 259				30 C 10 C
			848 460,590						
SB-214	₩0:2800°U		182						
SB-215	0:2900 UE			3.4.4. 6.78	¥5;287 ₁				\$131
SB-216	4 Marian 212. 1 122 274.2	424	(1-781)		** X35,435			2.198	
SB-2185	CAGAMA	1007			35,455				
			2 (4) 202 (85		7 75,462				
SB-97	23 .0000		***** * 4.979		-34 75,874				
TSB-10	13.0000	1,616	21,008	1,738.69	7,612	82%	0.55	5,155	382
SB-13	7.1300 K	571	4,075	337.23	7,950	86%	0.44	5,727	424
SB-201	5.8000 U	137	796	65.84	8,015	86%	0.42	5,864	434
SB-17	2.2000	645	1,419	117.43	8,133	87%	0.38	6,509	482
SB-88	1.6000	1.816	2,905	240.41	8,373	90%	0.30	8,324	617
SB-78	1.3500 K	381	514	42.57	8,416	91%	0.29	8,705	645
SB-217	1.3000	392	509	42.14	8,458	91%	0.27	9,097	674
SB-B	1.2500 K	31	38	3.16	8,461	91%	0.27	9,128	67.6
TSB-9	1.2000	2,600	3,120	258.19	8,719	94%	0.19	11,727	869
SB-152	0.6700 I	317	212	17.58	8,737	94%	0.18	12,044	892
SB-106	0.3200 U	1,722	551	45.61	8,782	94%	0.17	13,766	1,020
SB-96	0.3100 U	699	217	17.94	8,800	95%	0.16	14,466	1,072
SB-19	0.3000 U	638	191	15.84	8,816	95%	0.16	15,104	1,119
SB-58	0.3000 U	44	13	1.10	8,817	95%	0.16	15,148	1,122
SB-211	0.2900 U	615	178	14.76	8,832	95%	0.15	15,763	1,168
SB-87	0.2900 U	101	. 29	2.41	8,835	95%	0.15	15,863	1,175
SB-20	0.2900 U	616	179	14.78	8,849	95%	0.15	16,479	1,221
SB-190	0.2900 Ü	195	56	4.68	8,854	95%	0.14	16,674	1,235
SB-109	0.2900 U	1,656	480	39.73	8,894	96%	0.13	18,329	1,358
SB-43	0.2900 U	1,212	351	29.09	8,923	96%	0.12	19,541	1,448
SB-35	0.2900 U	996	289		8,947	96%	0.11		1,521
SB-44	0.2900 U	828	240	19.88	8,967	96%	0.11	21,366	1,583
SB-95	0.2900 U	87	25	2.09	8,969	96%			1,589
SB-194	0.2800 U	173	48	4.01	8,973	97%			1,602
SB-202	0.2800 U	157	44	3.65	8,976	97%	0.10		1,614
SB-203	0.2800 U	155	43	3.60	8,980	97%	0.10	21,939	1,625
SB-191	0.2800 U	123	34	2.85	8,983	97%	0.10		1,634
SB-46	0.2800 U	2,055	575	47.62	9,030	97%			1,786
SB-2	0.2760 U	626	173	14.30	9,045	97%	0.08		1,833
SB-193	0.2700 U	126	34	2.82	9,048	97%	0.08	24,869	1,842
SB-192	0.2700 U	110	30	2.45	9,050	97%	0.08	24,979	1,850
TSB-14	0.2500 U	1,970	492	40.76	9,091	98%	0.07	26,948	1,996

APPENDIX B-17 AREA-WEIGHTED AVERAGE DETAILS TOXAPHENE BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Toxaphene	5-10 ft bgs		1	heissen Pol	ygon			Excavation	
Soil Sample	Concentration (mg/kg)	Area (ft²)	Weighted Area (ft²-mg/kg)	Mass/ polygon (grams)	Total Mass (grams)	% mass	AWA (mg/kg)	Area (ft²)	Volume (yd ³)
TSB-5	0.2500 U	1,915	479	39.63	9,130	98%	0.05	28,864	2,138
TSB-28	0.2500 U	1,910	477	.39.51	9,170	99%	0.04	30,774	2,280
TSB-6	0.2500 U	1,635	409	33.83	9,204	99%	0.03	32,408	2,401
TSB-11	0.2500 U	1,610	403	33.32	9,237	99%	0.02	34,019	2,520
TSB-15	0.2500 U	1,594	398	32.98	9,270	100%	0.01	35,613	2,638
TSB-22	0.2500 U	1,278	320	26.45	9,296	100%	0.00	36,891	2,733
ND	0.0000	0	0	0.00	9,296	100%	0.00	36,891	2,733
ND	0.0000	0	Ö	0.00	9,296	100%	0.00	36,891	2,733
ND	0.0000	0	0	0.00	9,296	100%	0.00	36,891	2,733
ND	0.0000	0	0	0.00	9,296	100%	0.00	36,891	2,733
ND	0.0000	0	0.000	0.00	9,296	100%		36,891	2,733
Total		36,891	112,328	9,296					

AWA - Area weighted average

Shaded cells indicate soil polygons to be removed via excavation

APPENDIX B-18 AREA-WEIGHTED AVERAGE DETAILS CHLORDANE BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Chlordane	5-10 ft bgs		Exca	vation					
				Mass/					
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume
ID .	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)	ſ	(mg/kg)	(ft²)	(yd³)
No Excavation	<u>(***3/*3/</u>		(it ing/kg/	5,330	(3/	<u> </u>	1.00		1 (10 /
	0.480	451	217			> 0%			33
SB-150		149	758			· 2%			179-27 7 3.4
SB-151*	20.90 €		دين 😘 3 ,243			7.%			
SB-154	7.80	220	1,719			9%			72
SB-186	1.90	. 129	246	20.35	41 44	10%			
SB-187	3.30≨ √	: :: 110	364	30.09		3.≠°·10%			1.00
SB-188		. ∉.141	311	25.73		2:11%	-0.89	1-356	
SB-189	5.20	<u> </u>	- 6 Star - 1 801	66.28	634	12%	· 0.88	iš ≈1 510	*** 4.112
SB-197	3 1.30	206	· ****** \$ *26 7	22.14		± 12%	0.87		. 127
SB-199>	3.00	- 166	497	* ****41.11		≫. 13%	₹ 0.87		. 76 · 139
SB-215		283			4 698	₂e: ₃13%	P: 1 - 3	2,164	** ***
SB-216	0.420	424	¥-5	14.74		××-13%	- 0.86	£5,2;588	+±** + 192
SB-28	2.80	*∵685	1919		87.1		∵. 0.83		
SB-29	11.70	.550	6,437	532.74	1,404	26%	~ 0.73		32/ 7283
SB-83	3.80	440	1,673	138.47	1,542	3-, 29%	0.71	4:264	3 16
SB-32	/* 3.20	581	1,858	153.81	1,696	<u>32%</u>	- 0.68	4,845	359
SB-84 3. /**	5.70	466	2,655	219.75	1,916	36%	0.64	5,311	393
SB-78	32.00	381	12,192	1,009.01	2,925	55%	0.45	5,692	422
SB-98	12.10	543	6,573	543.98	3,469	65%	0.35	6,235	462
SB-13	3.40	571	1,943	160.81	3,630	68%	0.32	6,807	504
SB-P	3.00	210	630	52.15	3,682	69%	0.31	7,017	520
SB-36	3.00	755	2,265	187.49	3,869	73%	0.27	7,772	576
SB-80	2.20	223	491	40.62	3,910	73%	0.27	7,995	592
SB-46	1.93	2,055	3,966	328.26	4,238	80%	0.20	10,050	744
TSB-27	1.54	771	1,187	98.26	4,337	81%	0.19	10,821	802
SB-48	1.07	889	951	78.69	4,415	83%	0.17	11,709	867
SB-47	1.02	354	361	29.87	4,445	83%	0.17	12,063	894
SB-25	0.980	1,393	1,365	112.97	4,558	86%	0.14	13,456	997
SB-45	0.920	260	239	19.79	4,578	86%	0.14	13,716	1,016
SB-201	0.780	137	107	8.85	4,587	86%	0.14	13,853	1,026
SB-206	0.780	1,264	986	81.60	4,668	88%	0.12	15,117	1,120
SB-104	0.750	2,225	1,669	138.12	4,806	90%	0.10		1,285
SB-33	0.640	395	253	20.91	4,827	91%	0.09		1,314
SB-92	0.580	831	482	39.87	4,867	91%	0.09	18,568	1,375
SB-8	0.560	522	292	24.20	4,891	92%			L
SB-211	0.490	615	301	24.94	4,916				
SB-31	0.470	548	257	21.30					
SB-B	0.470	31	14	1.19	4,939	93%	0.07	20,283	
SB-30	0.390	802	313	25.88	4,965	93%	0.07	21,085	
TSB-10	0.360	1,616	582	48.15			0.06		
SB-C	0.360	908	327	27.04	5,040	95%	0.05		
SB-49	0.320	2,490	797	65.96	5,106	96%	0.04		
TSB-26	0.240	1,069	256		5,127	96%	0.04		
SB-26	0.240	87	21		5,129	96%	0.04		
SB-152	0.230	317	73	6.03	5,135	96%	0.04		
TSB-11	0.220	1,610	354	29.32	5,164	97%	0.03		
SB-198	0.220	160	35	2.91	5,167	97%	0.03	29,342	2,173

APPENDIX B-18 AREA-WEIGHTED AVERAGE DETAILS CHLORDANE BETWEEN 5-7 FEET CHEVRON ORLANDO SUPERFUND SITE ORLANDO, FLORIDA

Chlordane	5-10 ft bgs		Theis	sen Polygo	n	-		Excavation		
				Mass/						
Soil Sample	Concentration	Area	Weighted Area	polygon	Total Mass	% mass	AWA	Area	Volume	
ID	(mg/kg)	(ft²)	(ft²-mg/kg)	(grams)	(grams)	!	(mg/kg)	(ft²)	(yd ³)	
SB-44	0.189	828	157	12.96	5,180	97%	0.03	30,170	2,235	
SB-10	0.180	1,175	211	17.50	5,198	98%	0.02	31,345	2,322	
SB-108	0.176	496	87	7.23	5,205	98%	0.02	31,841	2,359	
SB-93	0.162	815	132	10.92	5,216	98%	0.02	32,655	2,419	
SB-153	0.149	344	51	4.24	5,220	98%	0.02	32,999	2,444	
SB-213	0.140	349	49	4.04	5,224	98%	0.02	33,348	2,470	
SB-217	0.130	392	51	4.21	5,228	98%	0.02	33,740	2,499	
SB-Q	0.127	668	85	7.02	5,235	98%	0.02	34,407	2,549	
SB-200	0.120	187	22	1.86	5,237	98%	0.02	34,594	2,563	
SB-109	0.116	1,656	192	15.89	5,253	99%	0.01	36,250	2,685	
SB-15	0.105	1,420	149	12.34	5,265	99%	0.01	37,670	2,790	
TSB-12	0.093	1,328	124	10.22	5,276	99%	0.01	38,998	2,889	
TSB-2	0.0691	2,184	151	12.49	5,288	99%	0.01	41,182	3,051	
SB-43	0.0670	1,212	81	6.72	5,295	. 99%	0.01	42,394	3,140	
SB-209	0.0540	262	14	1.17	5,296	99%	0.01	42,656	3,160	
SB-34	0.0470	408	19	1.59	5,298	99%	0.01	43,064	3,190	
SB-96	0.0460	699	32	2.66	5,300	99%	0.01	43,764	3,242	
SB-208	0.0450	188	8	0.70	5,301	99%	0.01	43,951	3,256	
SB-100	0.0410	1,220	50	4.14	5,305	100%	0.00	45,171	3,346	
SB-103	0.0390	1,830	· 71	5.91	5,311	100%	0.00	47,001	3,482	
TSB-25	0.0370	1,639	61	5.02	5,316	100%	0.00	48,640	3,603	
SB-192	0.0350	110	4	0.32	5,316	100%	0.00	48,750	3,611	
SB-196	0.0340	447	15	1.26	5,318	100%	0.00	49,197	3,644	
SB-95	0.0300	87	3	0.22	5,318	100%	0.00	49,284	3,651	
TSB-5	0.0210	1,915	40	3.33	5,321	100%	0.00	51,199	3,793	
SB-210	0.0200	144	3	0.24	5,321	100%	0.00	51,343	3,803	
SB-102	0.0154	1,019	16	1.30	5,323	100%	0.00	52,362	3,879	
SB-185	0.0150	245	4	0.30	5,323	100%	0.00	52,607	3,897	
TSB-15	0.0140	1,594	22	1.85	5,325	100%	0.00	54,201	4,015	
TSB-28	0.0111	1,910	21	1.75	5,327	100%	0.00	56,111	4,156	
SB-195	0.0110	767		0.70	5,327	100%	0.00	56,878	4,213	
SB-202	0.0071	157	1	0.09	5,327	100%	0.00	57,036	4,225	
TSB-18	0.0057	1,361	8	0.64	5,328	100%	0.00	58,397	4,326	
TSB-23	0.0038	1,593	6	0.50	5,328	100%	0.00	59,990	4,444	
TSB-22	0.0037	1,278	5	0.39	5,329	100%	0.00	61,268	4,538	
TSB-29	0.0030	1,946	6	0.48	5,329	100%	0.00	63,214	4,683	
TSB-24 ND	0.0028	1,460	4	0.34	5,330	100%	0.00	64,675	4,791	
ND	0.0000	0	0	0.00	5,330	100%	0.00	64,675	4,791	
ND ND	0.0000	0	0	0.00	5,330	100%	0.00	64,675	4,791	
ND ND	0.0000	0	. 0	0.00	5,330 5,330	100% 100%	0.00	64,675 64,675	4,791 4,791	
ND	0.0000	- 0	. 0	0.00	5,330	100%	0.00	64,675	4,791	
ND	0.0000	0	0.000	0.00	5,330	100%	0.00	64,675	4,791	
Total	0.0000	64,675	64,398	5,330	5,330	100%	1	04,075	4,731	
ı Ulai		04,073	04,390]	5,330						

AWA - Area weighted average

Shaded cells indicate soil polygons to be removed via excavation

ARCADIS

Appendix C

On-site Water Treatment and Disposal

APPENDIX C ON-SITE WATER TREATMENT AND DISPOSAL CHEVRON CHEMICAL SUPERFUND SITE ORLANDO, FLORIDA

Stormwater and/or groundwater that may collect in active excavation areas will be treated and discharged on-site. The maximum flow for treatment purposes is assumed to be 10 gallons per minute. Storage of untreated water will be provided in the treatment process for peak flows during rainfall events. Disposal of treated water will be to an on-site exfiltration trench located near the southwest corner of the site.

Groundwater quality data from MW-50S were used to design the treatment system, since this well is in the center of the largest excavation area and has the highest concentrations of BHCs measured on-site. Concentrations of other constituents were estimated from historical groundwater data from monitor wells in the vicinity of the central excavation area. The groundwater quality data and treatment goals are summarized in the attached document prepared by Carbonair. Carbonair designs, manufactures, and leases mobile water treatment systems. Based on the design parameters provided to Carbonair, the proposed treatment system would include the following components: chitosan dispenser, flocculation/settling tank, pre-filters, activated alumina adsorber, liquid-phase carbon adsorber, post filters. The system details are provided in the attached document. The treated water would be temporarily stored onsite in portable tanks pending waste characterization.

Samples of the water treatment system effluent will be collected daily from a sampling port on the last granular activated carbon filter and analyzed for chlorinated pesticides until water treatment is complete. The samples will be shipped overnight to SunLabs, Inc. in Tampa, Florida, and analyzed on a 24-hour turnaround. The effluent quality data will be reviewed to determine if the effluent quality limits have been achieved, prior to discharge of the effluent. If the limits have not been achieved, the effluent will be pumped through the activated carbon filters and re-sampled prior to discharge. Daily effluent discharge flow readings will be recorded.

At the completion of water treatment system operation and effluent discharge, the spent carbon and sediment that has collected in the settling and tanks will be sampled. The samples will be analyzed by SunLabs, Inc. for toxicity characteristics leaching procedure (TCLP) chlorinated pesticides, volatile organic compounds, semi-volatile organic compounds and metals. It is anticipated that the carbon and sediment will be non-hazardous waste by characteristic. If these media are non-hazardous waste, they will be transported to the Waste Management, Inc. Class 1 landfill in Okeechobee, Florida for disposal. If the media are hazardous waste by characteristic, a hazardous waste disposal facility will be selected based on the treatment requirements for the waste type. The United States Environmental Protection Agency (USEPA) will be notified of the intent to dispose of the material, and will identify the intended transportation company and disposal facility. The spent carbon and/or sediment will not be disposed of until USEPA has approved of the disposal facility.

Your Mobile Water Treatment Specialists

7500 Boone Ave N, Suite 101, Brooklyn Park, MN 55428 Ph: 800-526-4999 Fax: 763-315-4614 www.carbonair.com

Customer:

TASK Environmental

Site:

Chevron, Orlando, FL

Date:

4/8/10

Design Basis:

Flow rate: 10 gpm
Project duration: 10 days
Daily volume to be treated: 6,000 gallons
Total volume to be treated: 60,000 gallons
Water temperature: 70 °F (assumed)

Influent **Effluent** Contaminant Conc. Criteria (ug/L) (ug/L) Arsenic 30 10 10 1 Benzene 2 10 Chlordane 4.4'-DDD 0.8 0.8 Dieldrin 0.4 0.002 6 0.2 Lindane 21 0.05 a-BHC b-BHC 2 0.1 90 d-BHC 2.1

Recommendations:

Chitosan Dispenser (to dispense chitosan)

One lay-flat 6-inch hose dispensers containing a 2-lb ChitoVan Lactate cartridge

- Chitosan is used as an agent to flocculate fine sediment particles.
- The dispenser is predicted to require cartridge refilling every 100,000 gallons. The actual chitosan usage rate may vary under a fluctuating operating condition.

Flocculation/Settling Tank (to allow suspended solids to flocculate and settle)

One tank with a minimum volume of 600 gallons

The retention time is calculated to be 60 minutes at 10 gpm.

Pre-Filters (to remove fine flocs)

Two Krystil Klear L8830 bag filters (25 microns) in parallel followed by two Krystil Klear L8830 bag filters (1 micron)

Activated Alumina Adsorber (to remove arsenic)

One PC3 with 8 ft3 of activated alumina (AA)

The AA adsorber is predicted to last 2 million gallons.

Liquid Phase Carbon Adsorber (to remove dissolved hydrocarbons and pesticides)

One PC3 with 250 lbs of granular activated carbon

- Benzene is the critical contaminant. All the dissolved pesticides will also be removed by carbon adsorption and will break through after benzene.
- The carbon adsorber is predicted to last 2.88 million gallons (see the modeling below).

Post-Filters (to remove fine particulate pesticides)

Two Krystil Klear L8830 bag filters (0.5 microns)

 The post filters are recommended for the removal of fine particulates, which may be associated with pesticides.

NOTICE

THIS DOCUMENT AND ITS CONTENTS ARE PROPRIETARY TO CARBONAIR ENVIRONMENTAL SYSTEMS, AND MAY NOT BE COPIED, DISTRIBUTED OR USED BY ANYONE, IN WHOLE OR IN PART, WITHOUT THE EXPRESS AUTHORIZATION OF CARBONAIR

THE CONTENT OF THIS DOCUMENT HAS BEEN DEVELOPED BY CARBONAIR TO ADDRESS SPECIFIC FACTUAL INFORMATION. IT MAY BE BASED ON INFORMATION AND ASSUMPTIONS THAT ARE NOT DISCLOSED WITHIN THIS DOCUMENT, BUT REFLECT CARBONAIR'S KNOWLEDGE AND EXPERIENCE. THE INFORMATION IN THIS DOCUMENT SHOULD NOT BE USED OR RELIED UPON BY ANYONE WITHOUT THE COOPERATION OR ASSISTANCE OF CARBONAIR TO FULLY UNDERSTAND ITS INTENDED APPLICATION AND USE.

LIQUID-PHASE CARBON ADSORPTION MODEL CALCULATIONS

CARBONAIR ENVIRONMENTAL SYSTEMS 7500 BOONE AVENUE NORTH, SUITE 101 BROOKLYN PARK, MN 55428 PHONE: 800-526-4999

FAX: 763-315-4614

(GPM/SQ.FT):	250.00 10.000 4.2106
TIME (MIN.):	6.8152
CONCENTRATION (PPB): NCENTRATION (PPB): (PPB): (%):	BENZENE 10.000 10.000 1.0000 50.000
VOLUME TREATED(GAL) 288000. 576000. 864000. 1152000. 1440000. 2016000. 2304000. 2592000. 2880000. 3168000. 3744000. 4032000. 4032000. 408000. 5184000. 5760000. 6048000. 6336000.	EFF. CONC. (PPB) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0219 0.0765 0.2421 0.6512
	CONCENTRATION (PPB): NCENTRATION (PPB): (PPB): (%): VOLUME TREATED(GAL) 288000. 576000. 864000. 1152000. 1440000. 1728000. 2016000. 2304000. 2592000. 2880000. 3168000. 3168000. 3744000. 4032000. 4032000. 4608000. 5184000. 5760000. 5760000. 6048000.

Note: The model influent concentration results from the impact of the other background compounds, which is determined by using a competitive adsorption model

DISCLAIMER: ACTUAL RESULTS MAY VARY SIGNIFICANTLY FROM THE MODEL. THE MODEL IS BASED ON THE ASSUMPTIONS THAT THE FLOW RATE AND INFLUENT CONCENTRATION ARE CONSTANT, AND ONLY THE CONTAMINANTS PROVIDED TO CARBONAIR ARE PRESENT IN THE WATER. VARYING OPERATING CONDITIONS CAN HAVE ADVERSE EFFECTS ON CARBON ADSORPTIVE CAPACITY. THE PREDICTED BED LIFE IS NOT GUARANTEED.

ARCADIS

Appendix D

Approved Waste Profiles

WASTESTREAM INFORMATION PROFILE

Recertification	Disposal Code
colia ES LOCATION 3100 North Orange Blossom Trail ADDRESS Orlando CITY ST	32804
Manifest from – blank if direct	
colia ES TSDF requested <u>PORT ARTH</u> rechnology requested <u>INCIN</u> Generator No. <u>0</u> LD984172155	Generator EPA ID No.
Generator Name Chevron EMC Generator State	No. <u>NA</u>
Address 4800 Fournace Place, Suite 530A State Wastestree	am No. <u>NA</u>
City Bellaire State TX Country USA ZIP 77401	
NAICS (SIC) Code 211111 325311 Source Origin Form Sy	ystem Type
Waste Name Soil Lab or Wa	aste Area
Process Generating Waste Excavation of pesticide contaminated soil.	
Shipping Name PESTICIDE, SOLID, TOXIC, N. O. S.	
Hazard Class UN/NA No PG RQ amt1lb	
Q Desc: 1. Chlordane 2.	
OT Desc: 1. 151 Pesticide, Solid, Toxic, N. O. S. 2.	· · · · · · · · · · · · · · · · · · ·
Waste Codes <u>D020</u>	<u> </u>
Wastewater Non Wastewater Sub Category	
Physical and chemical properties (check all that apply)	1
H Specific Gravity Flash Point (F) Solids Solids	% ash
2-5 b 8-1.0 b 80-100 % settleable	water solubility
5-9 c 1.0 c 101-140 % dissolved	BTU/lb
9 - 12.5 d \(\square 1.0 - 1.2 \) d \(\square 141 - 200 \)	
> 12.5	
Physical State Hazardous Characteristics Solid a □ air reactive r □ radioactive or NRC regulated	Odor a none
semi-solid w water reactive s shock sensitive	b mild 🔲
liquid c cyanide reactive t temp sensitive	c strong
pumpable semi-solid f sulfide reactive m polymerization/monomer	describe <u>Organic</u>
☐ flowable powder	Halogens
☐ gas o ☐ oxidizing acid ☐ ☐ infectious ☐ aerosol p ☐ peroxide former	Br % Bromine
pressurized liquid	Cl % Chlorine
debris per 40 CFR 268.45	F % Fluorine
sharps	I % lodine
ayers: a multilayered: b bi-layered: c single phase:	Color
Top Layer Second Layer Bottom Layer Viscosity high (syrup) high (syrup) high (syrup)	Brown
by medium (oil) medium (oil) medium (oil)	<u> </u>
Layer: low (water) low (water) low (water)	1 ==
solid solid solid	1
sed oil y/n N HOC <1000 ppm or > 1000 ppm page 1 of 2	,
	WIP No

7141.7	Range	Units			Constituents			Range	Units
Heptachlor	0 to 0.14	1%							
a-Chlordane	0 to 0.32	%							
g-Chlordane	0 to 0.29	%							 -
Soil (silica sand and organic debris)	90 to 100	%							
Limestone gravel	0 to 20	%		·· ·····					
							İ		
					· · · · · · · · · · · · · · · · · · ·				
otal Composition Must Equal or Exceed 100%						••••			;
Other: Is the wastestream being imported into the USA?					Y	es	No 🛛		
Does the wastestream contain PCBs regulated by	40CFR?						No 🗵		
PCB concentrationppm									
). Is the wastestream subject to the Marine Pollutant	Regulations?						No 🔯		
Is the wastestream subject to Benzene NESHAP? If yes, is the wastestream subject to Notification at	nd Control Decuire	ments?		•			No ⊠ No ⊠		
Benzene concentrationppm	na Conabi Regane	mena:			10	c3[]	140 127		
2. Is the wastestream subject to RCRA subpart CC of	ontrols?				Ye	es 🔲	No 🛛		
Volatile organic concentration, if knownpp									
CC approved analytical method Generator &					v	es 🖂	No 🗀		
	·				, ,		140 [_	
Packaging: Bulk Solid Type/Size: ums Other	Bulk Liquid	П Туре			Type/Size: 1		en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month	Bulk Liquid	П Туре		Drum One Time ⊠	Other		en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month	Bulk Liquid	П Туре					en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month	Bulk Liquid	П Туре					en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month	Bulk Liquid	П Туре					en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month	Bulk Liquid	П Туре					en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month	Bulk Liquid	П Туре					en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month Additional Information: analytical or an MSDS available that describes the	Bulk Liquid	Type.			Other		en top st	eel, 55-ga	llon
Packaging: Bulk Solid Type/Size: rums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the ENERATOR CERTIFICATION	Bulk Liquid ☐ Quarter ☐ waste? Ye	∏ Type. Yes	ar 🔲 (One Time ☑ If yes, please a	Other	_			
Packaging: Bulk Solid Type/Size: rums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the series of the ser	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o □	If yes, please a	Other nttach, te descriptions of	f this w	aste. An	y sample s	ubmit
Other	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o □	If yes, please a	Other nttach, te descriptions of	f this w	aste. An	y sample s	ubmitt
Packaging: Bulk Solid Type/Size: rums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the series of the ser	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o o o o ontains to nethod.	If yes, please a	Other nttach, te descriptions of a description regardes of recertification recent formation regardes of r	f this w	aste. An	y sample s	ubmitt
Packaging: Bulk Solid Type/Size: rums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the standard certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o o o o ontains to nethod.	If yes, please a rue and accurat All relevant ir ment for purpo	Other	f this w	aste. An	y sample s	ubmitt
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the ENERATOR CERTIFICATION hereby certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix e possession of the generator has been disclosed. I a ARK T.	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o ontains to nethod. ste ship	If yes, please a rue and accurat All relevant in ment for purpos	Other et descriptions of a formation regardes of recertifications of the control of the c	f this w	aste. An	y sample s suspected h	ubmitt
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the series certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix e possession of the generator has been disclosed. It all the series certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix e possession of the generator has been disclosed. It all the series certified that describes the series certifi	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o ontains to nethod. ste ship	If yes, please a rue and accurate All relevant in ment for purpos	Other et descriptions of a formation regardes of recertifications of the control of the c	f this w	aste. An	y sample s suspected h	ubmitt
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the ENERATOR CERTIFICATION hereby certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix e possession of the generator has been disclosed. I a ARK T.	Bulk Liquid Quarter Quarter waste? Yeard all attached doc	Year	o ontains to nethod. ste ship	If yes, please a rue and accurat All relevant in ment for purpos	Other et descriptions of a formation regardes of recertifications of the control of the c	f this w	aste. An	y sample s suspected h	ubmit
Packaging: Bulk Solid Type/Size: Tums Other Shipping Frequency: Units 8 Per Month 5. Additional Information: analytical or an MSDS available that describes the series certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix e possession of the generator has been disclosed. It all the series certify that all information submitted in this a representative as defined in 40 CFR 261 - Appendix e possession of the generator has been disclosed. It all the series certified that describes the series certifi	Bulk Liquid Quarter Quarter A Quarter Yeard all attached doce of lor by using an exact authorize sampling	Yes	o o o ontains to method, ste ship	If yes, please a rue and accurate All relevant in ment for purpose 1/3 / 3 2 PHO	Other attach. the descriptions of aformation regards of recertifications of the control	f this we ding kn tion.	aste. An own or s	y sample s suspected h	ubmit

VEOLIA ENVIRONMENTAL SERVICES WIP INSTRUCTIONS

Veolia ES requires completion of all sections of the Wastestream Information Profile (WIP). Sections not applicable to the wastestream must have N/A written in the space provided.

Documented WIP information is used to comply with TSDF Waste Analysis Plans, RCRA and DOT regulations, Emergency Planning and Community Right-to-Know Act (EPCRA), Pollution Prevention Act, Toxic Release Inventory Report and other regulatory and generator requirements.

MARINE POLLUTANT

- The wastestream is subject to the Marine Pollutant Regulations if:
 - it is a bulk (>119 gallons) packaging with Marine Pollutant concentration ≥ 10% or Severe Marine Pollutant concentration ≥ 1%

Ωt

 it is non-bulk Marine Pollutant shipped by vessel (boat) in packages larger than 5 liters (liquid) or 5 kg (solid)

or

 it is a non-bulk Severe Marine Pollutant, shipped by vessel (boat) in packages larger than 0.5 liters (liquid) or 0.5 kg (solid).

Refer to the list of Marine Pollutants.

OZONE DEPLETING SUBSTANCE (ODS)

Refer to the list of Ozone Depleting Substances.

UNDERLYING HAZARDOUS CONSTITUENT (UHC)

Refer to the list of Underlying Hazardous Constituents (40 CFR 268.48)

BENZENE NESHAP

- The wastestream is subject to Benzene NESHAP notification and control requirements if it:
 - 1. contains > 10 ppm benzene, and
 - is generated by a chemical manufacturing plant, petroleum refinery or coke by-product recovery plant, and
 - 3. the generator's Total Annual Benzene (TAB) is ≥ 10 Mg/yr

TRI CHEMICAL

 The wastestream is subject to Toxic Release Inventory Reporting if it contains a Section 313 Toxic Chemical and meets Qualifier requirements.

OSHA CARCINOGEN

OSHA promulgated standards in 1974 to regulate the industrial use of 13 chemicals identified as
occupational carcinogens. Exposures are to be controlled through the required use of engineering
controls, work practices, and personal protective equipment, including respirators.
 See 29 CFR 1910.1003-1910.1016 for specific details.

RCRA SUB-PART CC CONTROLS

- Subpart CC Air Emission Control requirements apply to large quantity hazardous waste generators and to treatment, storage, and disposal facilities.
- Waste in containers greater than 0.1 cubic meters (i.e., 26.4 gallons) with greater than 500 ppm volatile
 organics are subject to this rule., unless otherwise exempted. Allowable controls include DOT approved
 containers, containers with an adequate cover and closure devices, and containers which operate with no
 detectable emissions (less than 500 ppm).

February 10, 2009

Susan Tobin TASK Environmental , Inc. 27751 Lake Jem Road Mount Dora, FL 32757

Re:

SunLabs Project Number:

090111.01

Client Project Description:

Chevron Orlando

Dear Mrs. Tobin:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
78668	CO-SB-126-1	1/8/2009
78669	CO-SB-126-3	1/8/2009
78670	CO-SB-127-1	1/8/2009
78671	CO-SB-127-3	1/8/2009
78672	CO-SB-128-1	1/8/2009
78673	CO-SB-128-3	1/8/2009
78674	CO-SB-129-1	1/8/2009
78675	CO-SB-129-3	1/8/2009
78676	CO-SB-130-1	1/8/2009
78677	CO-SB-130-3	1/8/2009
78678	CO-SB-131-1	1/8/2009
78679	CO-SB-131-3	1/8/2009
78680	CO-SB-132-1	1/8/2009
78681	CO-SB-132-3	1/8/2009
78682	CO-SB-133-1	1/8/2009
78683	CO-SB-133-3	1/8/2009
78684	CO-SB-134-1	1/8/2009
78685	CO-SB-134-3	1/8/2009
78686	CO-SB-135-1	1/8/2009
78687	CO-SB-135-3	1/8/2009
78688	CO-SB-136-1	1/8/2009
78689	CO-SB-136-3	1/8/2009
78690	CO-SB-136-5	1/8/2009
78691	CO-SB-137-1	1/8/2009
78692	CO-SB-137-3	1/8/2009
78693	CO-SB-137-5	1/8/2009
78694	CO-SB-138-1	1/8/2009
78695	CO-SB-138-3	1/8/2009
78696	CO-SB-138-5	1/8/2009
78697	CO-SB-139-1	1/8/2009

SunLabs, Inc.

Cover Page 1 of 2

Phone: (813) 881-9401

5460 Beaumont Center Blvd., Suite 520 Tampa, FL 33634

Unless Otherwise Noted and Where Applicable:

Email: Info@SunLabsInc.com Website: www.SunLabsInc.com

Sample Number	Sample Description	Date Collected
78698	CO-SB-139-3	1/8/2009
78699	CO-SB-139-5	1/8/2009
78700	CO-SB-140-1	1/8/2009
78701	· CO-SB-140-3	1/8/2009
78702	CO-SB-140-5	1/8/2009
78703	CO-SB-141-1	1/8/2009
78704	CO-SB-141-3	1/8/2009
78705	CO-SB-141-5	1/8/2009
78706	CO-SB-142-1	1/8/2009
78707	CO-SB-142-3	1/8/2009
78708	CO-SB-142-5	1/8/2009
78709	CO-SB-143-1	1/8/2009
78710	CO-SB-143-3	1/8/2009
78711	CO-SB-143-5	1/8/2009

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer

Vice President, Laboratory Operations

Enclosures

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78668 CO-SB-126-1 Matrix

Soil

Date Collected

1/8/2009 09:10

Date Received

1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	<u>1</u> :				01/14/09 12:53	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	69	1		1.1	DEP-SURR-	01/14/09 12:53	01/12/09 15:40
a-BHC	8081	mg/kg	0.0031 U	111	0.0031	0.013	319-84-6	01/14/09 12:53	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0077	319-85-7	01/14/09 12:53	01/12/09 15:40
Lindane	8081	mg/kg	0.00065 U	1	0.00065	0.0027	58-89-9	01/14/09 12:53	01/12/09 15:40
d-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0095	319-86-8	01/14/09 12:53	01/12/09 15:40
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0082	76-44-8	01/14/09 12:53	01/12/09 15:40
Aldrin	8081	mg/kg	0.0024 U	1	0.0024	0.0095	309-00-2	01/14/09 12:53	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.39	10	0.018	0.073	1024-57-3	01/15/09 11:34	01/12/09 15:40
a-Chlordane	8081	mg/kg	0.45	10	0.025	0.099	5103-71-9	01/15/09 11:34	01/12/09 15:40
g-Chlordane	8081	mg/kg	0.34	10	0.018	0.073	5103-74-2	01/15/09 11:34	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0069	959-98-8	01/14/09 12:53	01/12/09 15:40
Dieldrin	8081	mg/kg	1.7	10	0.0017	0.0069	60-57-1	01/15/09 11:34	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.072	1	0.0018	0.0073	72-55-9	01/14/09 12:53	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	. 1		0.0073	72-20-8	01/14/09 12:53	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.054	1	0.0017	0.0069	33213-65-9	01/14/09 12:53	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0077	72-54-8	01/14/09 12:53	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0069	7421-93 -4	01/14/09 12:53	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0052	1031-07-8	01/14/09 12:53	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00069 U	1	0.00069	0.0028	50-29-3	01/14/09 12:53	01/12/09 15:40
Mirex	8081	mg/kg	0.0069 U	11	0.0069	0.028	2385-85-5	01/14/09 12:53	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0056	53494-70-5	01/14/09 12:53	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0082	72-43-5	01/14/09 12:53	01/12/09 15:40
Toxaphene	8081	mg/kg	0.25 U	1	0.25	0.99	8001-35-2	01/14/09 12:53	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	7			0.11		01/13/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number

78669

Sample Designation

CO-SB-126-3

Matrix

Soil

Date Collected Date Received 1/8/2009 09:18

ed 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed	· · · · · · · · · · · · · · · · · · ·		1/14/09	1				01/14/09 13:04	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	.%	69	1		1	DEP-SURR-	01/14/09 13:04	01/12/09 15:4
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/14/09 13:04	01/12/09 15:4
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0074	319-85-7	01/14/09 13:04	01/12/09 15:40
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-89-9	01/14/09 13:04	01/12/09 15:4
d-BHC	8081	mg/kg	0.0023 U	11	0.0023	0.0091	319-86-8	01/14/09 13:04	01/12/09 15:4
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0078	7 6-44- 8	01/14/09 13:04	01/12/09 15:4
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0091	309-00-2	01/14/09 13:04	01/12/09 15:4
leptachlor epoxide	8081	mg/kg	0.018	1	0.0018	0.007	1024-57-3	01/14/09 13:04	01/12/09 15:4
a-Chlordane	8081	mg/kg	0.0075 I	1	0.0024	0.0095	5103-71-9	01/14/09 13:04	01/12/09 15:4
g-Chlordane	8081	mg/kg	0.0054 I	1	0.0018	0.007	5103-74-2	01/14/09 13:04	01/12/09 15:4
Endosulfan I	8081	mg/kg	0.0016 U	1	0.0016	0.0066	959-98-8	01/14/09 13:04	01/12/09 15:4
Dieldrin	8081	mg/kg	0.058	1	0.0016	0.0066	60-57-1	01/14/09 13:04	01/12/09 15:4
4,4'-DDE	8081	mg/kg	0.0049 I	1	0.0018	0.007	72-55-9	01/14/09 13:04	01/12/09 15:4
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-20-8	01/14/09 13:04	01/12/09 15:4
Endosulfan II	8081	mg/kg	0.0016 U	1	0.0016	0.0066	33213-65-9	01/14/09 13:04	01/12/09 15:4
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0074	72-5 4- 8	01/14/09 13:04	01/12/09 15:4
Endrin aldehyde	8081	mg/kg	0.0016_U	1	0.0016	0.0066	7421-93-4	01/14/09 13:04	01/12/09 15:4
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.0049	1031-07-8	01/14/09 13:04	01/12/09 15:4
4,4'-DDT	8081	mg/kg	0.00066 U	11	0.00066	0.0027	50-29-3	01/14/09 13:04	01/12/09 15:4
Mirex	8081	mg/kg	0.0066 U	1	0.0066	0.027	2385-85-5	01/14/09 13:04	01/12/09 15:4
Endrin ketone	8081	mg/kg	0.0013_U	1	0.0013	0.0054	53494-70-5	01/14/09 13:04	01/12/09 15:4
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0078	72-43-5	01/14/09 13:04	01/12/09 15:4
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.95	8001-35-2	01/14/09 13:04	01/12/09 15:4
Percent Moisture									
% Moisture	160.3M	%	3			0.1		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number

Sample Designation

78670

CO-SB-127-1

Matrix

Soil

Date Collected
Date Received

1/8/2009 09:55

1/10/2009 17:20

				Factor			CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA I	Method 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 13:47	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	67	1		1.1	DEP-SURR-	01/14/09 13:47	01/12/09 15:40
a-BHC	8081	mg/kg	0.0076_I	11	0.0032	0.013	319-84-6	01/14/09 13:47	01/12/09 15:40
b-BHC	8081	mg/kg	0.020	1	0.002	0.008	319-85-7	01/14/09 13:47	01/12/09 15:40
Lindane	8081	mg/kg	0.0062	11	0.00067	0.0028	58-89-9	01/14/09 13:47	01/12/09 15:40
d-BHC	8081	mg/kg	0.023	₁ -	0.0024	0.0098	319-86-8	01/14/09 13:47	01/12/09 15:40
Heptachlor	8081	mg/kg	0.0021 U	1	0.0021	0.0084	76-44-8	01/14/09 13:47	01/12/09 15:40
Aldrin	8081	mg/kg	0.0024 U	1	0.0024	0.0098	309-00-2	01/14/09 13:47	01/12/09 15:40
Heptachlor epoxíde	8081	mg/kg	0.0019 .U	1	0.0019	0.0076	1024-57-3	01/14/09 13:47	01/12/09 15:40
a-Chlordane	8081	mg/kg	4.0	20	0.0026	0.01	5103-71-9	01/15/09 11:55	01/12/09 15:40
g-Chlordane	8081	mg/kg	3.1	20	0.0019	0.0076	5103-74-2	01/15/09 11:55	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.036 K	20	0.036	0.14	959-98-8	01/15/09 11:55	01/12/09 15:40
Dieldrin	8081	mg/kg	0.61	20	0.036	0.14	60-57-1	01/15/09 11:55	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.93	20	0.0019	0.0076	72-55-9	01/15/09 11:55	01/12/09 15:40
Endrin	8081	mg/kg	0.0019 U	1	0.0019	0.0076	72-20-8	01/14/09 13:47	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0018 U	1	0.0018	0.0071	33213-65-9	01/14/09 13:47	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.04 K	20	0.04	0.16	72-54-8	01/15/09 11:55	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0018 U	1	0.0018	0.0071	7421 -9 3-4	01/14/09 13:47	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0053	1031-07-8	01/14/09 13:47	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.98	20	0.014	0.058	50-29-3	01/15/09 11:55	01/12/09 15:40
Mirex	8081	mg/kg	0.0071 U	1	0.0071	0.029	2385-85-5	01/14/09 13:47	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0058	534 94- 70-5	01/14/09 13:47	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.0021 U	1	0.0021	0.0084	72-43-5	01/14/09 13:47	01/12/09 15:40
Toxaphene	8081	mg/kg	25	10	0.26	1	8001-35-2	01/21/09 16:16	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	10			0.11		01/13/09	

SunLabs **Project Number** TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78671

CO-SB-127-3

Matrix

Soil

Date Collected Date Received 1/8/2009 10:56

1/10/2009 17:20

	•			_			-, -0,		
Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA	Method 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 13:58	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	73	1		1	DEP-SURR-	01/14/09 13:58	01/12/09 15:40
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/14/09 13:58	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0074	319-85-7	01/14/09 13:58	01/12/09 15:40
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-8 9- 9	01/14/09 13:58	01/12/09 15:40
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0091	319-86-8	01/14/09 13:58	01/12/09 15:40
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0078	76-44-8	01/14/09 13:58	01/12/09 15:40
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0091	309-00-2	01/14/09 13:58	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0042 I	1	0.0018	0.007	1024-57-3	01/15/09 12:06	01/12/09 15:40
a-Chlordane	8081	mg/kg	0.010	1	0.0024	0.0095	5103-71-9	01/15/09 12:06	01/12/09 15:40
g-Chlordane	8081 -	mg/kg	0.0085	1	0.0018	0.007	5103-74-2	01/15/09 12:06	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0016 U	1	0.0016	0.0066	959-98-8	01/14/09 13:58	01/12/09 15:40
Dieldrin	8081	mg/kg	0.027	1	0.0016	0.0066	60-57-1	01/15/09 12:06	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-55-9	01/14/09 13:58	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-20-8	01/14/09 13:58	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0016 U	1	0.0016	0.0066	33213-65-9	01/14/09 13:58	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0074	72-54-8	01/14/09 13:58	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0016 U	1	0.0016	0.0066	7421-93-4	01/14/09 13:58	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.0049	1031-07-8	01/14/09 13:58	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00066 U	1	0.00066	0.0027	50-29-3	01/14/09 13:58	01/12/09 15:40
Mirex	8081	mg/kg	0.0066 U	1	0.0066	0.027	2385-85-5	01/14/09 13:58	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0013 U_	1	0.0013	0.0054	534 94 -70-5	01/14/09 13:58	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0078	72-43-5	01/14/09 13:58	01/12/09 15:40
Toxaphene	8081	mg/kg	0.24 U	11	0.24	0.95	8001-35-2	01/14/09 13:58	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	3		1	0.1		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78672

CO-SB-128-1

Matrix

Soil

Date Collected Date Received

1/8/2009 11:25

1/10/2009 17:20

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 14:08	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	67	1		1.1	DEP-SURR-	01/14/09 14:08	01/12/09 15:40
a-BHC	8081	mg/kg	0.0032 U	1	0.0032	0.013	319-84-6	01/14/09 14:08	01/12/09 15:40
b-BHC	8081	mg/kg	0.002 U	1	0.002	0.0078	319-85-7	01/14/09 14:08	01/12/09 15:40
Lindane	8081	mg/kg	0.00065 U	1	0.00065	0.0027	58-89-9	01/14/09 14:08	01/12/09 15:40
d-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0096	319-86-8	01/14/09 14:08	01/12/09 15:40
Heptachlor	8081	mg/kg	0.073	1	0.0021	0.0083	76 -44- 8	01/14/09 14:08	01/12/09 15:40
Aldrin	8081	mg/kg	0.0024 U	1	0.0024	0.0096	309-00-2	01/14/09 14:08	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0074	1024-57-3	01/14/09 14:08	01/12/09 15:40
a-Chlordane	8081	mg/kg	2.6	10	0.0025	0.01	5103-71-9	01/15/09 12:17	01/12/09 15:40
g-Chlordane	8081	mg/kg	2.0	10	0.0018	0.0074	5103-74-2	01/15/09 12:17	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.007	959-98-8	01/14/09 14:08	01/12/09 15:40
Dieldrin	8081	mg/kg	4.6	100	0.0017	0.007	60-57-1	01/20/09 23:54	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0074	72-55-9	01/14/09 14:08	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	. 1	0.0018	0.0074	72-20-8	01/14/09 14:08	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.007	33213-65-9	01/14/09 14:08	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.002 U	1	0.002	0.0078	72-54-8	01/14/09 14:08	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.007	7421-93-4	01/14/09 14:08	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	11	0.0013	0.0052	1031-07-8	01/14/09 14:08	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.0007 U	1	0.0007	0.0028	50-29-3	01/14/09 14:08	01/12/09 15:40
Mirex	8081	mg/kg	0.007 U	11	0.007	0.028	2385-85-5	01/14/09 14:08	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0057	534 94 -70-5	01/14/09 14:08	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.0021 U	1	0.0021	0.0083	72-43-5	01/14/09 14:08	01/12/09 15:40
Toxaphene	8081	mg/kg	0.25 U	1	0.25	1	8001-35-2	01/14/09 14:08	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	8 -			0.11		01/13/09	

SunLabs, Inc. 5460 Beaumont Center Blvd., Suite 520 Tampa, FL 33634

Laboratory ID Number - E84809

Phone: (813) 881-9401 Email: Info@SunLabsInc.com Website: www.SunLabsInc.com

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78673 CO-SB-128-3 Matrix

Soil

Date Collected
Date Received

1/8/2009 11:29

1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor		RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 14:19	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	75	1		1	DEP-SURR-	01/14/09 14:19	01/12/09 15:40
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/14/09 14:19	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0074	319-85-7	01/14/09 14:19	01/12/09 15:40
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-89-9	01/14/09 14:19	01/12/09 15:40
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0091	319-86-8	01/14/09 14:19	01/12/09 15:40
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0078	7 6-44- 8	01/14/09 14:19	01/12/09 15:40
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0091	309-00-2	01/14/09 14:19	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.007	1024-57-3	01/14/09 14:19	01/12/09 15:40
a-Chlordane	8081	mg/kg	0.055	1	0.0024	0.0095	5103-71-9	01/14/09 14:19	01/12/09 15:40
g-Chlordane	8081	mg/kg	0.056	1	0.0018	0.007	5103-74-2	01/14/09 14:19	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0016 U	1	0.0016	0.0066	959-98-8	01/14/09 14:19	01/12/09 15:40
Dieldrin	8081	mg/kg	· 0.074	1	0.0016	0.0066	60-57-1	01/15/09 12:27	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-55-9	01/14/09 14:19	01/12/09 15:40
Endrin	['] 8081	mg/kg	0.0018 U	1	0.0018	0.007	72-20-8	01/14/09 14:19	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0016 U	1	0.0016	0.0066	33213 -6 5-9	01/14/09 14:19	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0074	72-5 4- 8	01/14/09 14:19	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0016 U	11	0.0016	0.0066	7421-93-4	01/14/09 14:19	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.0049	1031-07-8	01/14/09 14:19	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00066 U	1	0.00066	0.0027	50-29-3	01/14/09 14:19	01/12/09 15:40
Mirex	8081	mg/kg	0.0066 U	1	0.0066	0.027	2385-85-5	01/14/09 14:19	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0013 U	1	0.0013	0.0054	53494-70-5	01/14/09 14:19	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0078	72-43-5	01/14/09 14:19	01/12/09 15:40
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.95	8001-35-2	01/14/09 14:19	01/12/09 15:40
Percent Moisture									
O/ Majahura :	160 2M	0/	2			Λ1		01/13/09	

% Moisture

160.3M

%

3

0.1

01/13/09

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78674 CO-SB-129-1 Matrix

Soil

Date Collected

1/8/2009 10:17

Date Received 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 14:30	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	70	1		1.1	DEP-SURR-	01/14/09 14:30	01/12/09 15:40
a-BHC	8081	mg/kg	0.0032 U	1	0.0032	0.013	319-84-6	01/14/09 14:30	01/12/09 15:40
b-BHC	8081	mg/kg	0.002 U	1	0.002	0.0078	319-85-7	01/14/09 14:30	01/12/09 15:40
Lindane	8081	mg/kg	0.00065 U	1	0.00065	0.0027	58-89-9	01/14/09 14:30	01/12/09 15:40
d-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0096	319-86-8	01/14/09 14:30	01/12/09 15:40
Heptachlor	8081	mg/kg `	0.0021 U	1	0.0021	0.0083	7 6-44- 8	01/14/09 14:30	01/12/09 15:40
Aldrin	8081	mg/kg	0.0024 U	1	0.0024	0.0096	309-00-2	01/14/09 14:30	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0074	1024-57-3	01/14/09 14:30	01/12/09 15:40
a-Chlordane	8081	mg/kg	0.87	20	0.05	0.2	5103-71-9	01/15/09 12:38	01/12/09 15:40
g-Chlordane	8081	mg/kg	0.86	20	0.037	0.15	5103-74-2	01/15/09 12:38	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.007	959-98-8	01/14/09 14:30	01/12/09 15:40
Dieldrin	8081	mg/kg	0.46	20	0.035	0.14	60-57-1	01/15/09 12:38	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0074	72-55-9	01/14/09 14:30	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0074	72-20-8	01/14/09 14:30	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.007	33213-65-9	01/14/09 14:30	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.002 U	1	0.002	0.0078	72-54-8	01/14/09 14:30	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.007	7421-93 -4	01/14/09 14:30	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	_1	0.0013	0.0052	1031-07-8	01/14/09 14:30	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.0007 U	1	0.0007	0.0028	50-29-3	01/14/09 14:30	01/12/09 15:40
Mirex	8081	mg/kg	0.007_U	1	0.007	0.028	2385-85-5	01/14/09 14:30	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0057	53494-70-5	01/14/09 14:30	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.0021 U	1		0.0083	72-43-5	01/14/09 14:30	01/12/09 15:40
Toxaphene	8081	mg/kg	0.25 U	1	0.25	1	8001-35-2	01/14/09 14:30	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	8			0.11		01/13/09	

SunLabs **Project Number** TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78675

CO-SB-129-3

Matrix

Soil

Date Collected Date Received 1/8/2009 10:19 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA Me	thod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed		-,	1/14/09	1				01/14/09 14:41	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	. %	73	1		1.1	DEP-SURR-	01/14/09 14:41	01/12/09 15:40
a-BHC	8081	mg/kg	0.0031 U	1	0.0031	0.013	319-84-6	01/14/09 14:41	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	1 .	0.0019	0.0076	319-85-7	01/14/09 14:41	01/12/09 15:40
Lindane	8081	mg/kg	0.00063 U	1	0.00063	0.0026	58-89-9	01/14/09 14:41	01/12/09 15:40
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0093	319-86-8	01/14/09 14:41	01/12/09 15:40
Heptachlor	8081	mg/kg	0.22	1	0.002	0.008	7 6 44 8	01/14/09 14:41	01/12/09 15:40
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0093	309-00-2	01/14/09 14:41	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.16	1	0.0018	0.0072	1024-57-3	01/14/09 14:41	01/12/09 15:40
a-Chlordane	8081	mg/kg	1.9	10	0.024	0.097	5103-71-9	01/15/09 12:49	01/12/09 15:40
g-Chlordane	8081	mg/kg	1.7	10	0.018	0.072	5103-74-2	01/15/09 12:49	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0067	959-98-8	01/14/09 14:41	01/12/09 15:40
Dieldrin	8081	mg/kg	2.2	10	0.017	0.067	60-57-1	01/15/09 12:49	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-55-9	01/14/09 14:41	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-20-8	01/14/09 14:41	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213-65-9	01/14/09 14:41	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0076	72-54-8	01/14/09 14:41	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	01/14/09 14:41	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0051	1031-07-8	01/14/09 14:41	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00067 U	1	0.00067	0.0027	50-29-3	01/14/09 14:41	01/12/09 15:40
Mirex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	01/14/09 14:41	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0055	53494-70-5	01/14/09 14:41	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.008	72-43-5	01/14/09 14:41	01/12/09 15:40
Toxaphene	8081	mg/kg	18	10	0.24	0.97	8001-35-2	01/21/09 16:26	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	· %	5			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78676 CO-SB-130-1 Matrix

Soil

Date Collected

1/8/2009 10:37

Date Received 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL.	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09				•		01/12/09 15:40
Date Analyzed			1/14/09	_ 1				01/14/09 14:51	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	61	1		1.4	DEP-SURR-	01/14/09 14:51	01/12/09 15:40
a-BHC	8081	mg/kg	0.004 U	1	0.004	0.016	319-84-6	01/14/09 14:51	01/12/09 15:40
b-внc	8081	mg/kg	0.025	1	0.0025	0.0099	319-85-7	01/14/09 14:51	01/12/09 15:40
Lindane	8081	mg/kg	0.048	11	0.00082	0.0034	58-89-9	01/14/09 14:51	01/12/09 15:40
d-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-86-8	01/14/09 14:51	01/12/09 15:40
Heptachlor	8081	mg/kg	0.0026 U	11	0.0026	0.01	76-44-8	01/14/09 14:51	01/12/09 15:40
Aldrin	8081	mg/kg	0.003 U	1	0.003	0.012	309-00-2	01/14/09 14:51	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0023 U	1	0.0023	0.0093	1024-57-3	01/14/09 14:51	01/12/09 15:40
a-Chlordane	8081	mg/kg	5.9	20	0.063	0.25	5103-71-9	01/15/09 12:59	01/12/09 15:40
g-Chlordane '	8081	mg/kg	5.7	20	0.047	0.19	5103-74-2	01/15/09 12:59	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0022 U	1	0.0022	0.0088	959-98-8	01/14/09 14:51	01/12/09 15:40
Dieldrin	8081	mg/kg	7.1	20	0.044	0.18	60-57-1	01/15/09 12:59	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0023 U	1	0.0023	0.0093	72-55-9	01/14/09 14:51	01/12/09 15:40
Endrin	8081	mg/kg	0.0023 U	1	0.0023	0.0093	72-20-8	01/14/09 14:51	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0022 U	1	0.0022	0.0088	33213-65-9	01/14/09 14:51	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0025 U	11	0.0025	0.0099	72-54-8	01/14/09 14:51	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0022 U	1	0.0022	0.0088	7421-93-4	01/14/09 14:51	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg_	0.0016 U	1	0.0016	0.0066	1031-07-8	01/14/09 14:51	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00088 U	1	0.00088	0.0036	50-2 9- 3	01/14/09 14:51	01/12/09 15:40
Mirex	8081	mg/kg	0.0088 U	1	0.0088	0.036	2385-85-5	01/14/09 14:51	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0018 U	1	0.0018	0.0071	53494-70-5	01/14/09 14:51	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.0026 U	1	0.0026	0.01	72-43-5	01/14/09 14:51	01/12/09 15:40
Toxaphene	8081	mg/kg	0.32 U	1	0.32	1.3	8001-35-2	01/14/09 14:51	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	27			0.14		01/13/09	

Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

CO-SB-130-3

Matrix

Soil

Date Collected

1/8/2009 10:41

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep			
Organochlorine Pesticides by EPA M	1ethod 8081											
Date Extracted	3545a		01/12/09						01/12/09 15:40			
Date Analyzed			1/14/09	1				01/14/09 15:02				
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	69	1		1.1	DEP-SURR-	01/14/09 15:02	01/12/09 15:40			
а-ВНС	8081	mg/kg	0.0031 U	1	0.0031	0.013	319-84-6	01/14/09 15:02	01/12/09 15:40			
b-BHC	8081	mg/kg	0.0019 U	11	0.0019	0.0076	319-85-7	01/14/09 15:02	01/12/09 15:40			
Lindane	8081	mg/kg	0.00063 U	1	0.00063	0.0026	58-89-9	01/14/09 15:02	01/12/09 15:40			
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0093	319-86-8	01/14/09 15:02	01/12/09 15:40			
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.008	76-44-8	01/14/09 15:02	01/12/09 15:40			
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0093	309-00-2	01/14/09 15:02	01/12/09 15:40			
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0072	1024-57-3	01/14/09 15:02	01/12/09 15:40			
a-Chlordane	8081	mg/kg	2.8	10	0.024	0.097	5103-71-9	01/15/09 13:10	01/12/09 15:40			
g-Chlordane	8081	mg/kg	2.1	10	0.018	0.072	5103-74-2	01/15/09 13:10	01/12/09 15:40			
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0067	959-98-8	01/14/09 15:02	01/12/09 15:40			
Dieldrin	8081	mg/kg	4.5	50	0.084	0.34	60-57-1	01/20/09 00:15	01/12/09 15:40			
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-55-9	01/14/09 15:02	01/12/09 15:40			
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-20-8	01/14/09 15:02	01/12/09 15:40			
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213-65-9	01/14/09 15:02	01/12/09 15:40			
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0076	72-54-8	01/14/09 15:02	01/12/09 15:40			
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	01/14/09 15:02	01/12/09 15:40			
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0051	1031-07-8	01/14/09 15:02	01/12/09 15:40			
4,4'-DDT	8081	mg/kg	0.00067 U	11	0.00067	0.0027	50-29-3	01/14/09 15:02	01/12/09 15:40			
Mirex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	01/14/09 15:02	01/12/09 15:40			
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0055	53494-70-5	01/14/09 15:02	01/12/09 15:40			
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.008	72-43-5	01/14/09 15:02	01/12/09 15:40			
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.97	8001-35-2	01/14/09 15:02	01/12/09 15:40			
<u>Percent Moisture</u>												
% Moisture	160.3M	%	5			0.11		01/13/09				

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78678 CO-SB-131-1 Matrix

Soil

Date Collected
Date Received

1/8/2009 11:08

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 15:13	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	80	1		1.1	DEP-SURR-	-01/14/09 15:13	01/12/09 15:40
a-BHC	8081	mg/kg	0.0031 U	1	0.0031	0.013	319-84-6	01/14/09 15:13	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0077	319-85-7	01/14/09 15:13	01/12/09 15:40
Lindane	8081	mg/kg	0.00064 U	1	0.00064	0.0027	58-89-9	01/14/09 15:13	01/12/09 15:40
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0094	319-86-8	01/14/09 15:13	01/12/09 15:40
Heptachlor	8081	mg/kg	0.44	50	0.002	0.0081	7 6 44 -8	01/15/09 13:53	01/12/09 15:40
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0094	309-00-2	01/14/09 15:13	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0072	1024-57-3	01/14/09 15:13	01/12/09 15:40
a-Chlordane	8081	mg/kg	7.0	50	0.12	0.49	5103-71-9	01/15/09 13:53	01/12/09 15:40
g-Chlordane	8081	mg/kg	5.4	50	0.09	0.36	5103-74-2	01/15/09 13:53	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	. 1	0.0017	0.0068	959-98-8	01/14/09 15:13	01/12/09 15:40
Dieldrin	8081	mg/kg	10	50	0.085	0.34	60-57-1	01/15/09 13:53	01/12/09 15:40
4,4'-DDE	8081	mg/kg	1.9	50	0.0018	0.0072	72-55-9	01/15/09 13:53	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-20-8	01/14/09 15:13	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0068	33213-65-9	01/14/09 15:13	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0077	72-54-8	01/14/09 15:13	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0068	7421-93-4	01/14/09 15:13	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0051	1031-07-8	01/14/09 15:13	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00068 U	1	0.00068	0.0028	50-29-3	01/14/09 15:13	01/12/09 15:40
Mirex	8081	mg/kg	0.0068 U	1	0.0068	0.028	2385-85-5	01/14/09 15:13	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0055	53494-70-5	01/14/09 15:13	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0081	72-43-5	01/14/09 15:13	01/12/09 15:40
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.98	8001-35-2	01/14/09 15:13	01/12/09 15:40
<u>Percent Mojsture</u>									
% Moisture	160.3M	%	6			0.11		01/13/09	

SunLabs **Project Number** TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78679

CO-SB-131-3

Matrix

Soil

Date Collected Date Received 1/8/2009 11:13

Parameters	Method	Units	Results	DII Factor	MDL r	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/08	1				01/14/09 15:24	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081		76	_1		1.1	DEP-SURR-	01/14/09 15:24	01/12/09 15:40
a-BHC	8081	mg/kg	0.0031 U	1	0.0031	0.013	31 9-84-6	01/14/09 15:24	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0077	319-85-7	01/14/09 15:24	01/12/09 15:40
Lindane	8081	mg/kg	0.00064 U	1	0.00064	0.0027	58-89-9	01/14/09 15:24	01/12/09 15:40
d-BHC	8081	mg/kg	0.0023 U	11	0.0023	0.0094	319-86-8	01/14/09 15:24	01/12/09 15:40
Heptachlor	8081	mg/kg	0.051	1	0.002	0.0081	7 6-44- 8	01/14/09 15:24	01/12/09 15:40
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0094	30 9 -00-2	01/14/09 15:24	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0072	1024-57-3	01/14/09 15:24	01/12/09 15:40
a-Chlordane	8081	mg/kg	0.48	10	0.024	0.098	5103-71-9	01/15/09 14:04	01/12/09 15:40
g-Chlordane	8081	mg/kg	0.40	10	0.018	0.072	5103-74-2	01/15/09 14:04	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	_ 1	0.0017	0.0068	959-98-8	01/14/09 15:24	01/12/09 15:40
Dieldrin	8081	mg/kg	0.87	10	0.017	0.068	60-57-1	01/15/09 14:04	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.13	1	0.0018	0.0072	72-55-9	01/14/09 15:24	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-20-8	01/14/09 15:24	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0068	33213-65-9	01/14/09 15:24	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0077	72-5 4- 8	01/14/09 15:24	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0068	7421-93-4	01/14/09 15:24	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0051	1031-07-8	01/14/09 15:24	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00068 U	1	0.00068	0.0028	50-29-3	01/14/09 15:24	01/12/09 15:40
Mirex	8081	mg/kg	0.0068 U	1	0.0068	0.028	2385-85-5	01/14/09 15:24	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0055	53 494- 70-5	01/14/09 15:24	01/12/09 15:4
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0081	72-43-5	01/14/09 15:24	01/12/09 15:46
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.98	8001-35-2	01/14/09 15:24	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	6			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78680

CO-SB-132-1

Matrix

Soil

Date Collected
Date Received

1/8/2009 11:38

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09					•	01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 16:07	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	98	1		1.1	DEP-SURR-	01/14/09 16:07	01/12/09 15:40
a-BHC	8081	mg/kg	0.17	1	0.0033	0.014	319-84-6	01/14/09 16:07	01/12/09 15:40
b-BHC	8081	mg/kg	0.74	20	0.0021	0.0083	319-85-7	01/15/09 14:14	01/12/09 15:40
Lindane	8081	mg/kg	0.099	1	0.00069	0.0029	58-89-9	01/14/09 16:07	01/12/09 15:40
d-BHC	8081	mg/kg	0.21	1	0.0025	0.01	319-86-8	01/14/09 16:07	01/12/09 15:40
Heptachlor	8081	mg/kg	0.0022 U	1	0.0022	0.0087	76-44-8	01/14/09 16:07	01/12/09 15:40
Aldrin	8081	mg/kg	1.9	20	0.0025	0.01	309-00-2	01/15/09 14:14	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.002 U	1	0.002	0.0078	1024-57-3	01/14/09 16:07	01/12/09 15:40
a-Chlordane	8081	mg/kg	1.6	20	0.053	0.21	5103-71-9	01/15/09 14:14	01/12/09 15:40
g-Chlordane	8081	mg/kg	1.0	20	0.039	0.16	5103-74-2	01/15/09 14:14	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.037 K	20	0.037	0.15	959-98-8	01/21/09 16:05	01/12/09 15:40
Dieldrin	8081	mg/kg	2.1	20	0.037	0.15	60-57-1	01/15/09 14:14	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.002 U	1	0.002	0.0078	72-55-9	01/14/09 16:07	01/12/09 15:40
Endrin	8081	mg/kg	0.002 U	.1	0.002	0.0078	72-20-8	01/14/09 16:07	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0018 U	1	0.0018	0.0074	33213-65-9	01/14/09 16:07	01/12/09 15:40
4,4'-DDD	8081	mg/kg	3.0	20	0.041	0.17	72-54-8	01/15/09 14:14	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0018 U	1	0.0018	0.0074	7421-93-4	01/14/09 16:07	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0014 U	11		0.0055	1031-07-8	01/14/09 16:07	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.44	20	0.00074	0.003	50-2 9- 3	01/15/09 14:14	01/12/09 15:40
Mirex	8081	mg/kg	0.0074 U	1	0.0074	0.03	2385-85-5	01/14/09 16:07	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0015 U	1	0.0015	0.006	53 494- 70-5	01/14/09 16:07	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.0022 U	11		0.0087	72-43-5	01/14/09 16:07	01/12/09 15:40
Toxaphene	8081	mg/kg	26	20	0.26	1.1	8001-35-2	01/21/09 16:05	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	13			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78681

CO-SB-132-3

Matrix

Soil

Date Collected Date Received

1/8/2009 11:41

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 16:17	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	75	1		1.1	DEP-SURR-	01/14/09 16:17	01/12/09 15:40
a-BHC	8081	mg/kg	0.0032 I	1	0.0031	0.013	319-84-6	01/14/09 16:17	01/12/09 15:40
b-BHC	8081	mg/kg	0.018	1	0.0019	0.0076	319-85-7	01/14/09 16:17	01/12/09 15:40
Lindane	. 8081	mg/kg	0.00063 U	1	0.00063	0.0026	58-89-9	01/14/09 16:17	01/12/09 15:40
d-BHC	8081	mg/kg	0.0029 I	1	0.0023	0.0093	319-86-8	01/14/09 16:17	01/12/09 15:40
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.008	76-44-8	01/14/09 16:17	01/12/09 15:40
Aldrin	8081	mg/kg	0.019	1	0.0023	0.0093	309-00-2	01/14/09 16:17	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0072	1024-57-3	01/14/09 16:17	01/12/09 15:40
a-Chlordane	8081	mg/kg	0.014	1	0.0024	0.0097	5103-71-9	01/14/09 16:17	01/12/09 15:40
g-Chlordane	8081	mg/kg	0.013	1	0.0018	0.0072	5103-74-2	01/14/09 16:17	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0067	959-98-8	01/14/09 16:17	01/12/09 15:40
Dieldrin	8081	mg/kg	0.035	1	0.0017	0.0067	60-57-1	01/14/09 16:17	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-55-9	01/14/09 16:17	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-20-8	01/14/09 16:17	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213 -6 5-9	01/14/09 16:17	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0079	1	0.0019	0.0076	72-54-8	01/15/09 14:25	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	01/14/09 16:17	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0051	1031-07-8	01/14/09 16:17	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00067 U	1	0.00067	0.0027	50-29-3	01/14/09 16:17	01/12/09 15:40
Mirex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	01/14/09 16:17	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	11	0.0014	0.0055	53494-70-5	01/14/09 16:17	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.008	72-43-5	01/14/09 16:17	01/12/09 15:40
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.97	8001-35-2	01/14/09 16:17	01/12/09 15:40
Percent Moisture								•	
% Moisture	160.3M	%	5			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number

78682

Sample Designation

CO-SB-133-1

Matrix

Soil

Date Collected

Date Received

1/8/2009 11:49 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 16:28	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	72	1		1.1	DEP-SURR-	01/14/09 16:28	01/12/09 15:40
a-BHC	8081	mg/kg	1.6 K	500	1.6	6.5	319-84-6	01/15/09 14:36	01/12/09 15:40
b-BHC	8081	mg/kg	1 K	500	1	3.9	319-85-7	01/15/09 14:36	01/12/09 15:40
Lindane	8081	mg/kg	0.32 K	500	0.32	1.4	58-89-9	01/15/09 14:36	01/12/09 15:40
d-BHC	8081	mg/kg	1.2 K	500	1.2	4.8	319-86-8	01/15/09 14:36	01/12/09 15:40
Heptachlor	8081	mg/kg	31	500	1	4.2	7 6-44- 8	01/15/09 14:36	01/12/09 15:40
Aldrin	8081	mg/kg	1.2 K	500	1.2	4.8	309-00-2	01/15/09 14:36	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.9 K	500	0.9	3.7	1024-57-3	01/15/09 14:36	01/12/09 15:40
a-Chlordane	8081	mg/kg	260	5000	12	50	5103-71-9	01/20/09 00:26	01/12/09 15:40
g-Chlordane	8081	mg/kg	220	5000	9.2	37	5103-74-2	01/20/09 00:26	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.85 K	500	0.85	3.5	959-98-8	01/15/09 14:36	01/12/09 15:40
Dieldrin	8081	mg/kg	0.85 K	500	0.85	3.5	60-57-1	01/15/09 14:36	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.9 K	500	0.9	3.7	72-55-9	01/15/09 14:36	01/12/09 15:40
Endrin	8081	mg/kg	0.9 K	500	0.9	3.7	72-20-8	01/15/09 14:36	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.85 K	500	0.85	3.5	33213-65-9	01/15/09 14:36	01/12/09 15:40
4,4'-DDD	8081	mg/kg	29	5000	1	3.9	72-54-8	01/20/09 00:26	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.85 K	500	0.85	3.5	7421-93-4	01/15/09 14:36	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.65 K	500	0.65	2.6	1031-07-8	01/15/09 14:36	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.35 K	500	0.35	1.4	50-2 9- 3	01/15/09 14:36	01/12/09 15:40
Mirex	8081	mg/kg_	3.5 K	_500	3.5	14	2385-85-5	01/15/09 14:36	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.7 K	500	0.7	2.8	53494-70-5	01/15/09 14:36	01/12/09 15:40
Methoxychlor	8081	mg/kg	1 K	500	1	4.2	72-43-5	01/15/09 14:36	01/12/09 15:40
Toxaphene	8081	mg/kg	120 K	500	120	500	8001-35-2	01/15/09 14:36	01/12/09 15:40
Percent Moisture									
% Moisture	160.3M	%	8			0.11		01/13/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78683

CO-SB-133-3

Matrix

Soil

Date Collected Date Received 1/8/2009 11:51

1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 16:39	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	81	1		1	DEP-SURR-	01/14/09 16:39	01/12/09 15:40
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/14/09 16:39	01/12/09 15:40
b-BHC	8081	mg/kg	0.0019 U	11	0.0019	0.0074	319-85-7	01/14/09 16:39	01/12/09 15:40
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-89-9	01/14/09 16:39	01/12/09 15:40
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0091	319-86-8	01/14/09 16:39	01/12/09 15:40
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0078	7 6 44 8	01/14/09 16:39	01/12/09 15:40
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0091	309-00-2	01/14/09 16:39	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.007	1024-57-3	01/14/09 16:39	01/12/09 15:40
a-Chlordane	8081	mg/kg	. 0.20	10	0.024	0.095	5103-71-9	01/15/09 14:47	01/12/09 15:40
g-Chlordane	8081	mg/kg	0.18	10	0.018	0.07	5103-74-2	01/15/09 14:47	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0016 U	1	0.0016	0.0066	959-98-8	01/14/09 16:39	01/12/09 15:40
Dieldrin	8081	mg/kg	0.0016 U	1	0.0016	0.0066	60-57-1	01/14/09 16:39	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-55-9	01/14/09 16:39	01/12/09 15:40
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-20-8	01/14/09 16:39	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0016 U	1	0.0016	0.0066	33213-65-9	01/14/09 16:39	01/12/09 15:40
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0074	72-54-8	01/14/09 16:39	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0016 U	1	0.0016	0.0066	7421-93-4	01/14/09 16:39	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.0049	1031-07-8	01/14/09 16:39	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.00066 U	1	0.00066	0.0027	50-2 9 -3	01/14/09 16:39	01/12/09 15:40
Mirex	8081	mg/kg	0.0066 U	1	0.0066	0.027	2385-85-5	01/14/09 16:39	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0013 U	1	0.0013	0.0054	53494-70-5	01/14/09 16:39	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0078	72-43-5	01/14/09 16:39	01/12/09 15:40
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.95	8001-35-2	01/14/09 16:39	01/12/09 15:40
Percent Moisture									
D/ Mointain	160 3M	04	2			0.1		01/13/09	

% Moisture

160.3M

%

0.1

01/13/09

SunLabs Project Number

TAS

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78684

CO-SB-134-1

Matrix

Soil

Date Collected
Date Received

1/8/2009 13:35

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081					•			
Date Extracted	3545a		01/12/09						01/12/09 15:40
Date Analyzed			1/14/09	1				01/14/09 16:49	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	82	1		1.1	DEP-SURR-	01/14/09 16:49	01/12/09 15:40
a-BHC	8081	mg/kg	0.20	1	0.0032	0.013	319-84-6	01/14/09 16:49	01/12/09 15:40
b-BHC	8081	mg/kg	7.7	50	0.099	0.4	319-85-7	01/15/09 14:47	01/12/09 15:40
Lindane	8081	mg/kg	0.31	1	0.00066	0.0027	58-8 9- 9	01/14/09 16:49	01/12/09 15:40
d-BHC	8081	mq/kq	1.2 K	500	1.2	4.8	319-86-8	01/20/09 00:36	01/12/09 15:40
Heptachlor	8081	mg/kg	0.0021 U	1	0.0021	0.0084	76 -44- 8	01/14/09 16:49	01/12/09 15:40
Aldrin	8081	mg/kg	1.2 K	500	1.2	4.8	309-00-2	01/20/09 00:36	01/12/09 15:40
Heptachlor epoxide	8081	mg/kg	0.0019 U	1	0.0019	0.0075	1024-57-3	01/14/09 16:49	01/12/09 15:40
a-Chlordane	8081	mg/kg	10	500	1.3	5.1	5103-71-9	01/20/09 00:36	01/12/09 15:40
g-Chlordane	8081	mg/kg	10	500	0.93	3.7	5103-74-2	01/20/09 00:36	01/12/09 15:40
Endosulfan I	8081	mg/kg	0.0018 U	1	0.0018	0.007	959-98-8	01/14/09 16:49	01/12/09 15:40
Dieldrin	8081	mg/kg	9.9	50	0.0018	0.007	60-57-1	01/15/09 14:47	01/12/09 15:40
4,4'-DDE	8081	mg/kg	0.0019 U	1	0.0019	0.0075	72-55-9	01/14/09 16:49	01/12/09 15:40
Endrin	8081	mg/kg	0.0019 U	1	0.0019	0.0075	72-20-8	01/14/09 16:49	01/12/09 15:40
Endosulfan II	8081	mg/kg	0.0018 U	1	0.0018	0.007	33213-65-9	01/14/09 16:49	01/12/09 15:40
4,4'-DDD	8081	mg/kg	10	500	0.002	0.0079	72-54-8	01/20/09 00:36	01/12/09 15:40
Endrin aldehyde	8081	mg/kg	0.0018 U	1	0.0018	0.007	7421-93-4	01/14/09 16:49	01/12/09 15:40
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0053	1031-07-8	01/14/09 16:49	01/12/09 15:40
4,4'-DDT	8081	mg/kg	0.0007 U	1	0.0007	0.0029	50-29-3	01/14/09 16:49	01/12/09 15:40
Mirex	8081	mg/kg	0.007 U	. 1	0.007	0.029	2385-85-5	01/14/09 16:49	01/12/09 15:40
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0057	53494-70-5	01/14/09 16:49	01/12/09 15:40
Methoxychlor	8081	mg/kg	0.0021 U	1	0.0021	0.0084	72 -4 3-5	01/14/09 16:49	01/12/09 15:4
Toxaphene	8081	mg/kg	79	500	0.25	1	8001-35-2	01/20/09 00:36	01/12/09 15:4
<u>Percent Moisture</u>									
% Moisture	160.3M	%	9			0.11		01/13/09	

SunLabs **Project Number** 090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78685

CO-SB-134-3

Matrix

Soil

Date Collected Date Received 1/8/2009 13:39

				•	Juic Aci		1/10/		
Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	1				01/21/09 17:42	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	65	1		1	DEP-SURR-	01/21/09 17:42	01/12/09 18:00
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/21/09 17:42	01/12/09 18:00
b-BHC	8081	mg/kg	0.0019 I	1	0.0019	0.0075	319-85-7	01/21/09 17:42	01/12/09 18:00
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-89-9	01/21/09 17:42	01/12/09 18:00
d-BHC	. 8081	mg/kg	0.0023 U	1	0.0023	0.0092	319-86-8	01/21/09 17:42	01/12/09 18:00
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0079	7 6-44- 8	01/21/09 17:42	01/12/09 18:00
Aldrin	8081	mg/kg	0.0023 U_	1	0.0023	0.0092	309-00-2	01/21/09 17:42	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0071	1024-57-3	01/21/09 17:42	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.0074 I	1	0.0024	0.0096	5103-71-9	01/21/09 17:42	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.0067 I	1	0.0018	0.0071	5103-74-2	01/21/09 17:42	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.0017 U_	1	0.0017	0.0067	959-98-8	01/21/09 17:42	01/12/09 18:00
Dieldrin	8081	mg/kg	0.010	1	0.0017	0.0067	60-57-1	01/21/09 17:42	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0071	72-55-9	01/21/09 17:42	01/12/09 18:00
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0071	72-20-8	01/21/09 17:42	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213-65-9	01/21/09 17:42	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.0043 I	1	0.0019	0.0075	72-54-8	01/21/09 17:42	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	01/21/09 17:42	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.005	1031-07-8	01/21/09 17:42	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.00067 U	1	0.00067	0.0027	50-29-3	01/21/09 17:42	01/12/09 18:00
Mirex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	01/21/09 17:42	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0054	53494-70-5	01/21/09 17:42	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0079	72-43-5	01/21/09 17:42	01/12/09 18:00
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.96	8001-35-2	01/21/09 17:42	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	· %	4			0.1		01/13/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78686

CO-SB-135-1

Matrix

Soil

Date Collected

1/8/2009 13:57

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081					•			
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	500				01/21/09 19:19	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	0 SD	500		600	DEP-SURR-	01/21/09 19:19	01/12/09 18:00
a-BHC	8081	mg/kg	1.8 K	500	1.8	7.5	319-84-6	01/21/09 19:19	01/12/09 18:00
o-BHC	8081	mg/kg	1.1 K	500	1.1	4.4	319-85-7	01/21/09 19:19	01/12/09 18:00
Lindane	8081	mg/kg	0.37 K	500	0.37	1.6	58-89-9	01/21/09 19:19	01/12/09 18:00
1-BHC	8081	mg/kg	1.4 K	500	1.4	5.5	319-86-8	01/21/09 19:19	01/12/09 18:00
Heptachlor	8081	mg/kg	1.2 K	500	1.2	4.7	7 6-44- 8	01/21/09 19:19	01/12/09 18:00
Aldrin	8081	mg/kg	1.4 K	500	1.4	5.5	309-00-2	01/21/09 19:19	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	1 K	500	1	4.2	1024-57-3	01/21/09 19:19	01/12/09 18:00
a-Chlordane	8081	mg/kg	34	500	1.4	5.5	5103-71-9	01/21/09 19:19	01/12/09 18:00
g-Chlordane	8081	mg/kg	25	500	1	4.2	5103-74-2	01/21/09 19:19	01/12/09 18:00
Endosulfan I	8081	· mg/kg	1 K	500	1	4	959-98-8	01/21/09 19:19	01/12/09 18:00
Dieldrin	8081	mg/kg	1 K	500	1	4	60-57-1	01/21/09 19:19	01/12/09 18:00
4,4'-DDE	8081	mg/kg	12	500	1	4.2	72-55-9	01/21/09 19:19	01/12/09 18:00
Endrin	8081	mg/kg	1 K	500	1	4.2	72-20-8	01/21/09 19:19	01/12/09 18:00
Endosulfan II	8081	mg/kg	1 K	500	1	4	33213-65-9	01/21/09 19:19	01/12/09 18:00
4,4'-DDD	8081	mg/kg	49	500	1.1	4.4	72-54-8	01/21/09 19:19	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	1 K	500	1	4	7421-93-4	01/21/09 19:19	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.75 K	500	0.75	3	1031-07-8	01/21/09 19:19	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.4 K	500	0.4	1.6	50-29-3	01/21/09 19:19	01/12/09 18:00
Mirex	8081	mg/kg	4 K	500	4	16	2385-85-5	01/21/09 19:19	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.8 K	500	0.8	3.2	53494-70-5	01/21/09 19:19	01/12/09 18:00
Methoxychlor	8081	mg/kg	1.2 K	500	1.2	4.7	72-43-5	01/21/09 19:19	01/12/09 18:00
Toxaphene	8081	mg/kg	140 K	500	140	550	8001-35-2	01/21/09 19:19	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	19			0.12		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78687 CO-SB-135-3 Matrix

Soil

Date Collected
Date Received

1/8/2009 14:00

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	10				01/21/09 19:30	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	64	10		11	DEP-SURR-	01/21/09 19:30	01/12/09 18:00
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/21/09 19:30	01/12/09 18:00
b-BHC /	8081	mg/kg	0.019 K	10	0.019	0.077	319-85-7	01/21/09 19:30	01/12/09 18:00
Lindane	8081	mg/kg	0.0064 K	10	0.0064	0.027	58-89-9	01/21/09 19:30	01/12/09 18:00
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.094	319-86-8	01/21/09 19:30	01/12/09 18:00
Heptachlor	8081	mg/kg	0.02 K	10	0.02	0.081	7 6-44- 8	01/21/09 19:30	01/12/09 18:00
Aldrin	8081	mg/kg	0.023 K	10	0.023	0.094	309-00-2	01/21/09 19:30	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/21/09 19:30	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.57	50	0.024	0.098	5103-71-9	01/22/09 13:22	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.53	10	0.018	0.072	5103-74-2	01/21/09 19:30	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.017_K	10	0.017	0.068	959-98-8	01/21/09 19:30	01/12/09 18:00
Dieldrin	8081	mg/kg	0.55	50	0.017	0.068	60-57-1	01/22/09 13:22	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.018 K	10	0.018	0.072	72-55-9	01/21/09 19:30	01/12/09 18:00
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/21/09 19:30	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.068	33213-65-9	01/21/09 19:30	01/12/09 18:00
4,4'-DDD	8081	mg/kg	3.7	50	0.019	0.077	72-54-8	01/22/09 13:22	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.017 K	10	0.017	0.068	7421-93-4	01/21/09 19:30	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/21/09 19:30	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.0068 K	10	0.0068	0.028	50-29-3	01/21/09 19:30	01/12/09 18:00
Mirex	8081	mg/kg	0.068 K	10	0.068	0.28	2385-85-5	01/21/09 19:30	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.014 K	10	0.014	0.055	53494-70-5	01/21/09 19:30	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.02 K	10	0.02	0.081	72-43-5	01/21/09 19:30	01/12/09 18:00
Toxaphene	8081	mg/kg	2.4 K	10	2.4	9.8	8001-35-2	01/21/09 19:30	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	6			0.11		01/13/09	

SunLabs Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78688 CO-SB-136-1 Matrix

Soil

Date Collected
Date Received

1/8/2009 14:34

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	50				01/21/09 19:40	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	110	50		55	DEP-SURR-	01/21/09 19:40	01/12/09 18:00
a-BHC	8081	mg/kg	0.16 K	50	0.16	0.65	319-84-6	01/21/09 19:40	01/12/09 18:00
b-BHC	8081	mg/kg	0.40	50	0.095	0.38	319-85-7	01/21/09 19:40	01/12/09 18:00
Lindane	8081	mg/kg	0.032 K	50	0.032	0.13	58-89-9	01/21/09 19:40	01/12/09 18:00
d-BHC	8081	mg/kg	0.12 K	50	0.12	0.46	319-86-8	01/21/09 19:40	01/12/09 18:00
Heptachlor	8081	mg/kg	0.1 K	50	0.1	0.4	76 -44- 8	01/21/09 19:40	01/12/09 18:00
Aldrin	8081	mg/kg	0.12 K	50	0.12	0.46	309-00-2	01/21/09 19:40	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.09 K	50	0.09	0.36	1024-57-3	01/21/09 19:40	01/12/09 18:00
a-Chlordane	8081	mg/kg	5.1	50	0.12	0.48	5103-71-9	01/21/09 19:40	01/12/09 18:00
g-Chlordane	8081	mg/kg_	3.6	50	0.09	0.36	5103-74-2	01/21/09 19:40	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.085 K	50	0.085	0.34	959-98-8	01/21/09 19:40	01/12/09 18:00
Dieldrin	8081	mg/kg	0.97	50_	0.085	0.34	60-57-1	01/21/09 19:40	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.82	50	0.09	0.36	72-55-9	01/21/09 19:40	01/12/09 18:00
Endrin	8081	mg/kg	0.09 K	50	0.09	0.36	72-20-8	01/21/09 19:40	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.085 K	50	0.085	0.34	33213-65-9	01/21/09 19:40	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.095 K	50	0.095	0.38	72-54-8	01/21/09 19:40	
Endrin aldehyde	8081	mg/kg	0.085 K	50	0.085	0.34	7421-93- 4	01/21/09 19:40	
Endosulfan sulfate	8081	mg/kg	0.065 K	50	0.065	0.26	1031-07-8	01/21/09 19:40	
4,4'-DDT	8081	mg/kg	0.034 K	50	0.034	0.14	50-2 9- 3	01/21/09 19:40	
Mirex	8081	mg/kg	0.34 K	50	0.34	1.4	2385-85-5	01/21/09 19:40	
Endrin ketone	8081	mg/kg	0.07 K	50	0.07	0.28	534 94 -70-5	01/21/09 19:40	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.1 K	50	0.1	0.4	72-43-5	01/21/09 19:40	01/12/09 18:00
Toxaphene	8081	mg/kg	19 I	50	12	48	8001-35-2	01/21/09 19:40	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	5			0.11		01/13/09	

SunLabs Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number

Sample Designation

78689


CO-SB-136-3

Matrix

Soil

Date Collected Date Received 1/8/2009 14:36

				J	acc nec	CIVEU	1,10,		
Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a_		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	1				01/21/09 19:51	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	55	1		1	DEP-SURR-	01/21/09 19:51	01/12/09 18:00
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/21/09 19:51	01/12/09 18:00
b-BHC	8081	mg/kg	0.0060 I	1	0.0019	0.0074	319-85-7	01/21/09 19:51	01/12/09 18:00
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-89-9	01/21/09 19:51	01/12/09 18:00
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0091	319-86-8	01/21/09 19:51	01/12/09 18:00
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0078	76-44-8	01/21/09 19:51	01/12/09 18:00
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0091	309-00-2	01/21/09 19:51	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.007	1024-57-3	01/21/09 19:51	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.070	. 1	0.0024	0.0095	5103-71-9	01/21/09 19:51	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.066	1	0.0018	0.007	5103-74-2	01/21/09 19:51	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.0016 U	1	0.0016	0.0066	959-98-8	01/21/09 19:51	01/12/09 18:00
Dieldrin	8081	mg/kg	0.041	1	0.0016	0.0066	60-57-1	01/21/09 19:51	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-55-9	01/21/09 19:51	01/12/09 18:00
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.007	72-20-8	01/21/09 19:51	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.0016 U	1	0.0016	0.0066	33213-65-9	01/21/09 19:51	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0074	72-54-8	01/21/09 19:51	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.0016 U	1	0.0016	0.0066	7421-93-4	01/21/09 19:51	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.0049	1031-07-8	01/21/09 19:51	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.00066 U	_ 1	0.00066	0.0027	50-29-3	01/21/09 19:51	01/12/09 18:00
Mirex	8081	mg/kg	0.0066 U	1	0.0066	0.027	2385-85-5	01/21/09 19:51	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.0013 U	. 1	0.0013	0.0054	53494-70-5	01/21/09 19:51	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0078	72-43-5	01/21/09 19:51	01/12/09 18:00
Toxaphene	8081	mg/kg	0.59 I	1	0.24	0.95	8001-35-2	01/21/09 19:51	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	3			0.1		01/13/09	

SunLabs Project Number

TASK Environmental , Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78690 CO-SB-136-5 Matrix

Soil

Date Collected
Date Received

1/8/2009 14:39

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
<u>Hold</u>									
Hold			NA	1	-			02/10/09	

SunLabs Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78691

CO-SB-137-1

Matrix

Soil

Date Collected
Date Received

1/8/2009 14:49

Parameters	Method	Units	Results		Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	lethod 8081			•						
Date Extracted	3545a		01/12/09							01/12/09 18:00
Date Analyzed			1/21/09		500				01/21/09 20:02	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	0	SD	500		550	DEP-SURR-	01/21/09 20:02	01/12/09 18:00
a-BHC	8081	mg/kg	1.6	K	500	1.6	6.5	319-84-6	01/21/09 20:02	01/12/09 18:00
b-BHC	8081	mg/kg	0.95	K	500	0.95	3.8	319-85-7	01/21/09 20:02	01/12/09 18:00
Lindane	8081	mg/kg	0.32	K	500	0.32	1.4	58-89-9	01/21/09 20:02	01/12/09 18:00
d-BHC	8081	mg/kg	1.2	K	500	1.2	4.8	319-86-8	01/21/09 20:02	01/12/09 18:00
Heptachlor	8081	mg/kg	1400		10000	20	82	76-44-8	01/22/09 13:44	01/12/09 18:00
Aldrin	8081	mg/kg	1.2	K	500	1.2	4.8	309-00-2	01/21/09 20:02	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.9	K	500	0.9	3.6	1024-57-3	01/21/09 20:02	01/12/09 18:00
a-Chlordane	8081	mg/kg	3200		1E+0	250	990	5103-71-9	01/22/09 19:26	01/12/09 18:00
g-Chlordane	8081	mg/kg	2900		1E+0	180	730	5103-74-2	01/22/09 19:26	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.85	K	500	0.85	3.4	959-98-8	01/21/09 20:02	01/12/09 18:00
Dieldrin	8081	mg/kg	0.85	K	500	0.85	3.4	60-57-1	01/21/09 20:02	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.9	K	500	0.9	3.6	72-55-9	01/21/09 20:02	01/12/09 18:00
Endrin	8081	mg/kg	0.9	K	500	0.9	3.6	72-20-8	01/21/09 20:02	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.85	K	500	0.85	3.4	33213-65-9	01/21/09 20:02	01/12/09 18:00
4,4'-DDD	8081	mg/kg	19	K	10000	19	77	72-5 4- 8	01/22/09 13:44	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.85	K	500	0.85	3.4	7421-93-4	01/21/09 20:02	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.65	K	500	0.65	2.6	1031-07-8	01/21/09 20:02	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.34	K	500	0.34	1.4	50-29-3	01/21/09 20:02	01/12/09 18:00
Mirex	8081	mg/kg	3.4	K	500	3.4	14	2385-85-5	01/21/09 20:02	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.7	K	500	0.7	2.8	53494-70-5	01/21/09 20:02	01/12/09 18:00
Methoxychlor	8081	mg/kg	1	K	500	1	4.1	72-43-5	01/21/09 20:02	01/12/09 18:00
Toxaphene	8081	mg/kg	120	K	500	120	500	8001-35-2	01/21/09 20:02	01/12/09 18:00
Percent Moisture										
% Moisture	160.3M	%	7				0.11		01/13/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description
Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78692

CO-SB-137-3

Matrix

Soil

Date Collected

1/8/2009 14:51

Date Received 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA I	Method 8081	•							
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	10				01/21/09 20:12	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	IM 0	10		11	DEP-SURR-	01/21/09 20:12	01/12/09 18:00
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/21/09 20:12	01/12/09 18:00
b-BHC	8081	mg/kg	0.019 K	10	0.019	0.077	319-85-7	01/21/09 20:12	01/12/09 18:00
Lindane	8081	mg/kg	0.0064 K	10	0.0064	0.027	58-89-9	01/21/09 20:12	01/12/09 18:00
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.094	319-86-8	01/21/09 20:12	01/12/09 18:00
Heptachlor	8081	mg/kg	91	500	1	4	7 6-44- 8	01/22/09 16:56	01/12/09 18:00
Aldrin	8081	mg/kg	0.023 K	10	0.023	0.094	309-00-2	01/21/09 20:12	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/21/09 20:12	01/12/09 18:00
a-Chlordane	8081	mg/kg	340	500	1.2	4.9	5103-71-9	01/22/09 16:56	01/12/09 18:00
g-Chlordane	8081	mg/kg	210	500	0.9	3.6	5103-74-2	01/22/09 16:56	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.017 K	10	0.017	0.068	959-98-8	01/21/09 20:12	01/12/09 18:00
Dieldrin	8081	mg/kg	0.017 K	10	0.017	0.068	60-57-1	01/21/09 20:12	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.018 K	10	0.018	0.072	72-55-9	01/21/09 20:12	01/12/09 18:00
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/21/09 20:12	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.068	33213-65-9	01/21/09 20:12	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.96 K	500	0.96	3.8	72-54-8	01/22/09 16:56	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.017 K	10	0.017	0.068	7421-93-4	01/21/09 20:12	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/21/09 20:12	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.0068 K	10	0.0068	0.028	50-29-3	01/21/09 20:12	01/12/09 18:00
Mirex	8081	mg/kg	0.068 K	10	0.068	0.28	2385-85-5	01/21/09 20:12	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.014 K	10	0.014	0.055	53494-70-5	01/21/09 20:12	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.02 K	10	0.02	0.081	72-43-5	01/21/09 20:12	01/12/09 18:00
Toxaphene	8081	mg/kg	2.4 K	10	2.4	9.8	8001-35-2	01/21/09 20:12	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	6			0.11		01/13/09	

SunLabs Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78693

CO-SB-137-5

Matrix

Soil

Date Collected Date Received 1/8/2009 14:54

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/21/09						01/21/09 16:45
Date Analyzed			2/6/09	1				02/06/09 16:51	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	62	1		1.1	DEP-SURR-	02/06/09 16:51	01/21/09 16:45
a-BHC	8081	mg/kg	0.0031 U	1	0.0031	0.013	319-84-6	02/06/09 16:51	01/21/09 16:45
b-BHC	8081	mg/kg_	0.0019_U	1	0.0019	0.0077	319-85-7	02/06/09 16:51	01/21/09 16:45
Lindane	8081	mg/kg	0.00065 U	1	0.00065	0.0027	58-89-9	02/06/09 16:51	01/21/09 16:45
d-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0095	319-86-8	02/06/09 16:51	01/21/09 16:45
Heptachlor	8081	mg/kg	0.19	1.	0.002	0.0082	7 6-44- 8	02/06/09 16:51	01/21/09 16:45
Aldrin	8081	mg/kg	0.0024_U	1	0.0024	0.0095	309-00-2	02/06/09 16:51	01/21/09 16:45
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0073	1024-57-3	02/06/09 16:51	01/21/09 16:45
a-Chlordane	8081	mg/kg	0.72	10	0.025	0.099	5103-71-9	02/09/09 18:53	01/21/09 16:45
g-Chlordane	8081	mg/kg	0.61	10	0.018	0.073	5103-74-2	02/09/09 18:53	01/21/09 16:45
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0069	959-98-8	02/06/09 16:51	01/21/09 16:45
Dieldrin	8081	mg/kg	0.0017 U	1	0.0017	0.0069	60-57-1	02/06/09 16:51	01/21/09 16:45
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0073	72-55-9	02/06/09 16:51	01/21/09 16:45
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0073	72-20-8	02/06/09 16:51	01/21/09 16:45
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0069	33213-65-9	02/06/09 16:51	01/21/09 16:4
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0077	72-5 4- 8	02/06/09 16:51	01/21/09 16:4
Endrin aldehyde	8081	mg/kg	0.0017 U	11	0.0017	0.0069	7421-93-4	02/06/09 16:51	01/21/09 16:4
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0052	1031-07-8	02/06/09 16:51	01/21/09 16:4
4,4'-DDT	8081	mg/kg	0.00069 U	1	0.00069	0.0028	50-2 9- 3	02/06/09 16:51	01/21/09 16:4
Mirex	8081	mg/kg	0.0069 U	1	0.0069	0.028	2385-85-5	02/06/09 16:51	01/21/09 16:4
Endrin ketone	8081	mg/kg	· 0.0014 U	1	0.0014	0.0056	53494-70-5	02/06/09 16:51	01/21/09 16:4
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0082	72-43-5	02/06/09 16:51	01/21/09 16:4
Toxaphene	8081	mg/kg_	0.25 U	1	0.25	0.99	8001-35-2	02/06/09 16:51	01/21/09 16:4
Percent Moisture									
% Moisture	160.3M	%	7			0.11		02/03/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78694

CO-SB-138-1

Matrix

Soil

Date Collected

Date Received

1/8/2009 15:01

Parameters	Method	Units	Results	Díi Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA I	<u> 1ethod 8081</u>			•					
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	10				01/21/09 20:23	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	58	10		11	DEP-SURR-	01/21/09 20:23	01/12/09 18:00
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/21/09 20:23	01/12/09 18:00
b-BHC	8081	mg/kg	0.50	10	0.019	0.076	319-85-7	01/21/09 20:23	01/12/09 18:00
Lindane	8081	mg/kg	0.070	10	0.0063	0.026	58-89-9	01/21/09 20:23	01/12/09 18:00
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.093	319-86-8	01/21/09 20:23	01/12/09 18:00
Heptachlor	8081	mg/kg	0.02 K	10	0.02	0.08	7 6 44 -8	01/21/09 20:23	01/12/09 18:00
Aldrin	8081	mg/kg	0.023 K	10	0.023	0.093	309-00-2	01/21/09 20:23	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/21/09 20:23	01/12/09 18:00
a-Chlordane	8081	mg/kg	2.6	10	0.024	0.097	5103-71-9	01/21/09 20:23	01/12/09 18:00
g-Chlordane	8081	mg/kg	1.6	10	0.018	0.072	5103-74-2	01/21/09 20:23	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.017 K	10	0.017	0.067	959-98-8	01/21/09 20:23	01/12/09 18:00
Dieldrin	8081	mg/kg	2.0	_10	0.017	0.067	60-57-1	01/21/09 20:23	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.018 K	10	0.018	0.072	72-55-9	01/21/09 20:23	01/12/09 18:00
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/21/09 20:23	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.067	33213-65-9	01/21/09 20:23	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.19 K	100	0.19	0.76	72-54-8	01/22/09 17:06	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.017 K	10	0.017	0.067	7421-93 -4	01/21/09 20:23	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/21/09 20:23	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.0067 K	10	0.0067	0.027	50-2 9- 3	01/21/09 20:23	01/12/09 18:00
Mirex	8081	_mg/kg	0.067 K	10	0.067	0.27	2385-85-5	01/21/09 20:23	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.014 K	10	0.014	0.055	534 94- 70-5	01/21/09 20:23	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.02 K	10	0.02	0.08	72-43-5	01/21/09 20:23	01/12/09 18:00
Toxaphene	8081	mg/kg	2.4 K	10	2.4	9.7	8001-35-2	01/21/09 20:23	01/12/09 18:00
Percent Moisture			•						
% Moisture	160.3M	%	5			0.11		01/13/09	

SunLabs **Project Number** TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78695

CO-SB-138-3

Matrix

Soil

Date Collected Date Received 1/8/2009 15:04

Parameters	Method	Units	Results	Dil Facto	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep	
Organochlorine Pesticides by EPA	1ethod 8081									
Date Extracted	3545a		01/12/09						01/12/09 18:00	
Date Analyzed			1/21/09	10				01/21/09 20:34		
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	66	10		11	DEP-SURR-	01/21/09 20:34	01/12/09 18:00	
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/21/09 20:34	01/12/09 18:00	
b-BHC	8081	mg/kg	0.20	10	0.019	0.076	319-85-7	01/21/09 20:34	01/12/09 18:00	
Lindane	8081	mg/kg	0.015 I	10	0.0063	0.026	58-89-9	01/21/09 20:34	01/12/09 18:00	
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.093	319-86-8	01/21/09 20:34	01/12/09 18:00	
Heptachlor	8081	mg/kg	0.02 K	10	0.02	0.08	76- 44- 8	01/21/09 20:34	01/12/09 18:00	
Aldrin .	8081	mg/kg	0.023 K	10	0.023	0.093	309-00-2	01/21/09 20:34	01/12/09 18:00	
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/21/09 20:34	01/12/09 18:00	
a-Chlordane	8081	mg/kg	0.16	10	0.024	0.097	5103-71-9	01/21/09 20:34	01/12/09 18:00	
g-Chlordane	8081	mg/kg	0.15	10	0.018	0.072	5103-74-2	01/21/09 20:34	01/12/09 18:00	
Endosulfan I	8081	mg/kg	0.017 K	10	0.017	0.067	959-98-8	01/21/09 20:34	01/12/09 18:00	
Dieldrin	8081	mg/kg	0.10	10	0.017	0.067	60-57-1	01/21/09 20:34	01/12/09 18:00	
4,4'-DDE	8081	mg/kg	0.060 I	10	0.018	0.072	72-55-9	01/21/09 20:34	01/12/09 18:00	
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/21/09 20:34	01/12/09 18:00	
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.067	33213-65-9	01/21/09 20:34	01/12/09 18:00	
4,4'-DDD	8081	mg/kg	0.019 K	10	0.019	0.076	72-54-8	01/21/09 20:34	01/12/09 18:00	
Endrin aldehyde	8081	mg/kg_	0.017 K	10	0.017	0.067	7421-93-4	01/21/09 20:34	01/12/09 18:00	
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/21/09 20:34	01/12/09 18:0	
4,4'-DDT	8081	mg/kg	0.0067 K	10	0.0067	0.027	50-29-3	01/21/09 20:34	01/12/09 18:00	
Mirex	8081	mg/kg	0.067 K	10	0.067	0.27	2385-85-5	01/21/09 20:34	01/12/09 18:0	
Endrin ketone	8081	mg/kg_	0.014 K	10_	0.014	0.055	53494-70-5	01/21/09 20:34	01/12/09 18:00	
Methoxychlor	8081	mg/kg	0.02 K	10	0.02	0.08	72-43-5	01/21/09 20:34	01/12/09 18:0	
Toxaphene	8081	mg/kg	2.4 K	10	2.4	9.7	8001-35-2	01/21/09 20:34	01/12/09 18:00	
Percent Moisture	•									
% Moisture	160.3M	%	5			0.11		01/13/09	•	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78696 CO-SB-138-5 Matrix

Soil

Date Collected
Date Received

1/8/2009 15:08

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	lethod 8081								
Date Extracted	3545a		01/21/09						01/21/09 16:45
Date Analyzed			2/6/09	1				02/06/09 17:02	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	59	1		1.1	DEP-SURR-	02/06/09 17:02	01/21/09 16:45
a-BHC	8081	mg/kg	0.0031 U	1	0.0031	0.013	319-84-6	02/06/09 17:02	01/21/09 16:45
b-внс	8081	mg/kg	0.019	1	0.0019	0.0076	31 9 -85-7	02/06/09 17:02	01/21/09 16:45
Lindane	8081	mg/kg	0.0024 I	1	0.00063	0.0026	58-89-9	02/06/09 17:02	01/21/09 16:45
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0093	319-86-8	02/06/09 17:02	01/21/09 16:45
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.008	7 6-44- 8	02/06/09 17:02	01/21/09 16:45
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0093	309-00-2	02/06/09 17:02	01/21/09 16:45
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0072	1024-57-3	02/06/09 17:02	01/21/09 16:45
a-Chlordane	8081	mg/kg	0.0024 U	1	0.0024	0.0097	5103-71-9	02/06/09 17:02	01/21/09 16:45
q-Chlordane	8081	mg/kg	0.0018 U	1	0.0018	0.0072	5103-74-2	02/06/09 17:02	01/21/09 16:45
Endosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0067	959-98-8 /	02/06/09 17:02	01/21/09 16:45
Dieldrin	8081	mg/kg	0.0017 U	1	0.0017	0.0067	60-57-1	02/06/09 17:02	01/21/09 16:45
4,4'-DDE	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-55-9	02/06/09 17:02	01/21/09 16:45
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0072	72-20-8	02/06/09 17:02	01/21/09 16:45
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213-65-9	02/06/09 17:02	01/21/09 16:45
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0076	72-54-8	02/06/09 17:02	01/21/09 16:45
Endrin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	02/06/09 17:02	01/21/09 16:4
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0051	1031-07-8	02/06/09 17:02	01/21/09 16:45
4,4'-DDT	8081	mg/kg	0.00067 U	1	0.00067	0.0027	50-29-3	02/06/09 17:02	01/21/09 16:4
Mirex	8081	mg/kg	0.0067 บ	1	0.0067	0.027	2385-85-5	02/06/09 17:02	01/21/09 16:4
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0055	5 3 4 94 -70-5	02/06/09 17:02	01/21/09 16:45
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.008	72-43-5	02/06/09 17:02	01/21/09 16:4
Toxaphene	8081	mg/kg	0.64 I	1	0.24	0.97	8001-35-2	02/06/09 17:02	01/21/09 16:4
Percent Moisture									
% Moisture	160.3M	%	5			0.11		02/03/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description
Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78697

CO-SB-139-1

Matrix

Soil

Date Collected
Date Received

SUII

1/8/2009 15:10 1/10/2009 17:20

· · · · · · · · · · · · · · · · · · ·							
RL CAS	S Date/Time umber Analyzed	Date/Time Prep					
		01/12/09 18:00					
	01/22/09 17:17						
1 DEP-9	-SURR- 01/22/09 17:17	01/12/09 18:00					
).13 319-8	-84-6 01/22/09 17:17	01/12/09 18:00					
0.076 319-8	-85-7 <u>01/22/09</u> 17:17	01/12/09 18:00					
0.026 58-89	39-9 01/22/09 17:17	01/12/09 18:00					
).093 319-6	-86-8 01/22/09 17:17	01/12/09 18:00					
).08 7 6-4 4	14-8 01/22/09 17:17	01/12/09 18:00					
0.093 309-0	-00-2 01/22/09 17:17	01/12/09 18:00					
0.072 1024	4-57-3 01/22/09 17:17	01/12/09 18:00					
0.097 5103	3-71-9 01/22/09 17:17	01/12/09 18:00					
0.072 5103	3-74-2 01/22/09 17:17	01/12/09 18:00					
).067 959-9	-98-8 01/22/09 17:17	01/12/09 18:00					
0.067 60-57	57-1 01/22/09 17:17	01/12/09 18:00					
0.072 72-5	55-9 01/22/09 17:17	01/12/09 18:00					
0.072 72-20	20-8 01/22/09 17:17	01/12/09 18:00					
0.067 3321	13-65-9 01/22/09 17:17	01/12/09 18:00					
0.076 72-54	54-8 01/22/09 17:17	01/12/09 18:00					
0.067 7421	1-93-4 01/22/09 17:17	01/12/09 18:00					
0.051 1031	1-07-8 01/22/09 17:17	01/12/09 18:00					
0.027 50-29	29-3 01/22/09 17:17	01/12/09 18:00					
0.27 2385	5-85-5 01/22/09 17:17	01/12/09 18:00					
0.055 53 49	94 -70-5 01/22/09 17:17	01/12/09 18:00					
0.08 72-4	43-5 01/22/09 17:17	01/12/09 18:00					
9.7 8001	1-35-2 01/22/09 17:17	01/12/09 18:00					
D.11	01/13/09						
_							

SunLabs **Project Number**

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78698 CO-SB-139-3 Matrix

Soil

Date Collected

1/8/2009 15:12

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	50				01/21/09 20:55	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	80	50		55	DEP-SURR-	01/21/09 20:55	01/12/09 18:00
a-BHC	8081	mg/kg	0.015 K	5	0.015	0.064	319-84-6	01/22/09 17:28	01/12/09 18:00
b-BHC	8081	mg/kg	0.13 I	5	0.095	0.38	319-85-7	01/22/09 17:28	01/12/09 18:00
Lindane	8081	mg/kg	0.0032 K	_5	0.0032	0.013	58-89-9	01/22/09 17:28	01/12/09 18:00
d-BHC	8081	mg/kg	0.012 K	5	0.012	0.047	319-86-8	01/22/09 17:28	01/12/09 18:00
Heptachlor	8081	mg/kg	0.11 I	50	0.1	0.4	76-44-8	01/21/09 20:55	01/12/09 18:00
Aldrin	8081	mg/kg	0.012 K	5	0.012	0.047	309-00-2	01/22/09 17:28	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.009 K	5	0.009	0.036	1024-57-3	01/22/09 17:28	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.47 I	50	0.12	0.49	5103-71-9	01/21/09 20:55	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.46	_50	0.09	0.36	5103-74-2	01/21/09 20:55	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.0085 K	5	0.0085	0.034	959-98-8	01/22/09 17:28	01/12/09 18:00
Dieldrin	8081	mg/kg	0.16 <u>I</u>	5	0.085	0.34	60-57-1	01/22/09 17:28	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.061	5	0.009	0.036	72-55-9	01/22/09 17:28	01/12/09 18:00
Endrin	8081	mg/kg	0.009 K	5	0.009	0.036	72-20-8	01/22/09 17:28	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.0085 K	5	0.0085	0.034	33213-65-9	01/22/09 17:28	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.0096 K	5	0.0096	0.038	72-54-8	01/22/09 17:28	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.0085 -K	5	0.0085	0.034	7421-93-4	01/22/09 17:28	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.0064 K	5	0.0064	0.026	1031-07-8	01/22/09 17:28	01/12/09 18:00
4,4'-DDT	8081	mg/kg	1.1	50	0.034	0.14	50-29-3	01/21/09 20:55	01/12/09 18:00
Mirex	8081	mg/kg	0.034 K	5	0.034	0.14	2385-85-5	01/22/09 17:28	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.0069 K	5	0.0069	0.028	53 494- 70-5	01/22/09 17:28	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.01 K	5	0.01	0.04	72-43-5	01/22/09 17:28	01/12/09 18:00
Toxaphene	8081	mg/kg	. 1.2 K	5	1.2	4.9 ,	8001-35-2	01/22/09 17:28	01/12/09 18:00
<u>Percent Moisture</u>			_						
% Moisture	160.3M	%	6			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78699

CO-SB-139-5

Matrix

Soil

Date Collected
Date Received

1/8/2009 15:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/21/09						01/21/09 16:45
Date Analyzed			2/6/09	1				02/06/09 17:12	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081		59	1		1.1	DEP-SURR-	02/06/09 17:12	01/21/09 16:45
a-BHC	8081	mg/kg	0.0033 U	1	0.0033	0.014	31 9-84-6	02/06/09 17:12	01/21/09 16:45
b-BHC	8081	mg/kg	0.002 U	11	0.002	0.0082	319-85-7	02/06/09 17:12	01/21/09 16:45
Lindane	8081	mg/kg	0.00068 U	1	0.00068	0.0028	58-89-9	02/06/09 17:12	01/21/09 16:45
d-BHC	8081	mg/kg	0.0025 U	1	0.0025	0.01	319-86-8	02/06/09 17:12	01/21/09 16:45
Heptachlor	8081	mg/kg	0.0022 U	1	0.0022	0.0086	7 6-44- 8	02/06/09 17:12	01/21/09 16:45
Aldrin	8081	mg/kg	0.0025 U	11	0.0025	0.01	309-00-2	02/06/09 17:12	01/21/09 16:45
Heptachlor epoxide	8081	mg/kg	0.0019 U	1	0.0019	0.0077	1024-57-3	02/06/09 17:12	01/21/09 16:45
a-Chlordane	8081	mg/kg_	0.028	1	0.0026	0.01	5103-71-9	02/06/09 17:12	01/21/09 16:45
g-Chlordane	8081	mg/kg	0.019	1	0.0019	0.0077	5103-74-2	02/06/09 17:12	01/21/09 16:45
Endosulfan I	8081	mg/kg	0.0018 U	1	0.0018	0.0073	959-98-8	02/06/09 17:12	01/21/09 16:45
Dieldrin	8081	mg/kg	0.019	1	0.0018	0.0073	60-57-1	02/06/09 17:12	01/21/09 16:45
4,4'-DDE	8081	mg/kg	0.0019 U	1	0.0019	0.0077	72-55-9	02/06/09 17:12	01/21/09 16:45
Endrin	8081	mg/kg	0.0019 U	1	0.0019	0:0077	72-20-8	02/06/09 17:12	01/21/09 16:45
Endosulfan II	8081	mg/kg	0.0018 U	1	0.0018	0.0073	33213-65-9	02/06/09 17:12	01/21/09 16:45
4,4'-DDD	8081	mg/kg	0.002 U	1	0.002	0.0082	72-54-8	02/06/09 17:12	01/21/09 16:45
Endrin aldehyde	8081	mg/kg	0.0018 U	1	0.0018	0.0073	7421-93-4	02/06/09 17:12	01/21/09 16:45
Endosulfan sulfate	8081	mg/kg	0.0014 U	1	0.0014	0.0055	1031-07-8	02/06/09 17:12	01/21/09 16:45
4,4'-DDT	8081	mg/kg	0.00073_U	1	0.00073	0.003	50-29-3	02/06/09 17:12	01/21/09 16:45
Mirex	8081	mg/kg	0.0073 U	1	0.0073	0.03	2385-85-5	02/06/09 17:12	01/21/09 16:45
Endrin ketone	8081	mg/kg	0.0015 U	1	0.0015	0.0059	53494-70-5	02/06/09 17:12	01/21/09 16:45
Methoxychlor	8081	mg/kg	0.0022 U	1	0.0022	0.0086	72-43-5	02/06/09 17:12	01/21/09 16:45
Toxaphene	8081	mg/kg	0.26 U	1	0.26	1	8001-35-2	02/06/09 17:12	01/21/09 16:45
Percent Moisture				•					
% Moisture	160.3M	%	12			0.11		02/03/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78700

CO-SB-140-1

Matrix

Soil

Date Collected
Date Received

1/8/2009 15:26

Parameters	Method	Units	Results	Dii Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/22/09	10				01/22/09 17:39	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	68	10		11	DEP-SURR-	01/22/09 17:39	01/12/09 18:00
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/22/09 17:39	01/12/09 18:00
b-BHC	8081	mg/kg	0.019 K	10	0.019	0.076	319-85-7	01/22/09 17:39	01/12/09 18:00
Lindane	8081	mg/kg	0.0063 K	10	0.0063	0.026	58-89-9	01/22/09 17:39	01/12/09 18:00
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.093	319-86-8	01/22/09 17:39	01/12/09 18:00
Heptachlor	8081	mg/kg	0.023 I	10	0.02	0.08	76 -44- 8	01/22/09 17:39	01/12/09 18:00
Aldrin	8081	mg/kg	0.025 I	10	0.023	0.093	309-00-2	01/22/09 17:39	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/22/09 17:39	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.21	10	0.024	0.097	5103-71-9	01/22/09 17:39	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.24	10	0.018	0.072	5103-74-2	01/22/09 17:39	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.017 K	10	0.017	0.067	959-98-8	01/22/09 17:39	01/12/09 18:00
Dieldrin	8081	mg/kg	0.14	10	0.017	0.067	60-57-1	01/22/09 17:39	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.10	10	0.018	0.072	72-55-9	01/22/09 17:39	01/12/09 18:00
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/22/09 17:39	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.067	33213-65-9	01/22/09 17:39	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.019 K	10	0.019	0.076	72-5 4- 8	01/22/09 17:39	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.017 K	10	0.017	0.067	7421-93-4	01/22/09 17:39	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/22/09 17:39	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.24	10	0.0067	0.027	50-2 9 -3	01/22/09 17:39	01/12/09 18:00
Mirex	8081	mg/kg	0.067 K	10	0.067	0.27	2385-85-5	01/22/09 17:39	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.014 K	10	0.014	0.055	53 494 -70-5	01/22/09 17:39	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.02 K	10	0.02	80.0	72 -4 3-5	01/22/09 17:39	01/12/09 18:00
Toxaphene	8081	mg/kg	2.4 K	10	2.4	9.7	8001-35-2	01/22/09 17:39	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	5			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78701 CO-SB-140-3 Matrix

Soil

Date Collected
Date Received

1/8/2009 15:29

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	1ethod 8081	•							
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	10				01/21/09 21:49	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	64	10		11	DEP-SURR-	01/21/09 21:49	01/12/09 18:00
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/21/09 21:49	01/12/09 18:00
b-BHC	8081	mg/kg	0.041 I	10	0.019	0.077	319-85-7	01/21/09 21:49	01/12/09 18:00
Lindane	8081	mg/kg	0.0064 K	10	0.0064	0.027	58-89-9	01/21/09 21:49	01/12/09 18:00
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.094	319-86-8	01/21/09 21:49	01/12/09 18:00
Heptachlor	8081	mg/kg	0.02 K	10	0.02	0.081	76 -44- 8	01/21/09 21:49	01/12/09 18:00
Aldrin	8081	mg/kg	0.023 K_	_10	0.023	0.094	309-00-2	01/21/09 21:49	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/21/09 21:49	01/12/09 18:00
a-Chlordane	8081	mg/kg	. 0.31	10	0.024	0.098	5103-71-9	01/21/09 21:49	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.28	10	0.018	0.072	5103-74-2	01/21/09 21:49	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.017 K	10	0.017	0.068	959-98-8	01/21/09 21:49	01/12/09 18:00
Dieldrin	8081	mg/kg	0.19	10	0.017	0.068	60-57-1	01/21/09 21:49	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.19	10	0.018	0.072	72-55-9	01/21/09 21:49	01/12/09 18:00
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/21/09 21:49	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.068	33213-65-9	01/21/09 21:49	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.019 K	10	0.019	0.077	72-54-8	01/21/09 21:49	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.017 K	10	0.017	0.068	7421-93-4	01/21/09 21:49	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/21/09 21:49	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.0068 K	10	0.0068	0.028	50-29-3	01/21/09 21:49	01/12/09 18:00
Mirex	8081	mg/kg	0.068 K	10	0.068	0.28	2385-85-5	01/21/09 21:49	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.014 K	10	0.014	0.055	534 94 -70-5	01/21/09 21:49	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.02 K	10	0.02	0.081	72 -4 3-5	01/21/09 21:49	01/12/09 18:00
Toxaphene	8081	mg/kg	2.4 K	10	2.4	9.8	8001-35-2	01/21/09 21:49	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	6			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78702 CO-SB-140-5 Matrix

Soil

Date Collected

1/8/2009 15:31

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081		•						
Date Extracted	3545a		01/21/09						01/21/09 16:45
Date Analyzed			2/6/09	1				02/06/09 17:23	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	60	1		1.1	DEP-SURR-	02/06/09 17:23	01/21/09 16:49
a-BHC	8081	mg/kg	0.0032 U	<u>' 1 </u>	0.0032	0.013	319-84-6	02/06/09 17:23	01/21/09 16:4
b-BHC	8081	mg/kg	0.002 U	1	0.002	0.0079	319-85-7	02/06/09 17:23	01/21/09 16:4
Lindane	8081	mg/kg	0.00066 U	1	0.00066	0.0027	58-89-9	02/06/09 17:23	01/21/09 16:4
d-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0097	319-86-8	02/06/09 17:23	01/21/09 16:49
Heptachlor	8081	mg/kg	0.0021 U	11	0.0021	0.0084	76-44-8	02/06/09 17:23	01/21/09 16:4
Aldrin	8081	mg/kg	0.0024 U	1	0.0024	0.0097	309-00-2	02/06/09 17:23	01/21/09 16:4
Heptachlor epoxide	8081	mg/kg	0.0019 U	1	0.0019	0.0075	1024-57-3	02/06/09 17:23	01/21/09 16:4
a-Chlordane	8081	mg/kg	0.021	1	0.0025	0.01	5103-71-9	02/06/09 17:23	01/21/09 16:4
g-Chlordane	8081	mg/kg	0.017	<u>1</u> ·	0.0019	0.0075	5103-74-2	02/06/09 17:23	01/21/09 16:4
Endosulfan I	8081	mg/kg	0.0018 U	1	0.0018	0.007	959-98-8	02/06/09 17:23	01/21/09 16:4
Dieldrin	8081	mg/kg	0.011	1	0.0018	0.007	60-57-1	02/06/09 17:23	01/21/09 16:4
4,4'-DDE	8081	mg/kg	0.0019 U	1	0.0019	0.0075	72-55-9	02/06/09 17:23	01/21/09 16:4
Endrin	8081	mg/kg_	0.0019 U	1	0.0019	0.0075	72-20-8	02/06/09 17:23	01/21/09 16:4
Endosulfan II	8081	mg/kg	0.0018 U	1	0.0018	0.007	33213-65-9	02/06/09 17:23	01/21/09 16:4
4,4'-DDD	8081	mg/kg	0.002 U	<u> </u>	0.002	0.0079	72-54-8	02/06/09 17:23	01/21/09 16:4
Endrin aldehyde	8081	mg/kg	0.0018 U	1	0.0018	0.007	7421-93-4	02/06/09 17:23	01/21/09 16:4
Endosulfan sulfate	8081	mg/kg	0.0013 U	1	0.0013	0.0053	1031-07-8	02/06/09 17:23	01/21/09 16:4
4,4'-DDT	8081	mg/kg	0.0007 U	1	0.0007	0.0029	50-29-3	02/06/09 17:23	01/21/09 16:4
Mirex	8081	mg/kg	0.007 U	1	0.007	0.029	2385-85-5	02/06/09 17:23	01/21/09 16:4
Endrin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0057	53494-70-5	02/06/09 17:23	01/21/09 16:4
Methoxychlor	8081	mg/kg	0.0021 U	1	0.0021	0.0084	72-43-5	02/06/09 17:23	01/21/09 16:4
Toxaphene	8081	mg/kg	0.25 U	1	0.25	1	8001-35-2	02/06/09 17:23	01/21/09 16:4
Percent Moisture									
% Moisture	160.3M	%	9			0.11		02/03/09	

SunLabs Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78703

CO-SB-141-1

Matrix

Soil

Date Collected
Date Received

1/8/2009 15:36

							-,	,	
Parameters	Method	Units	Results	Dil Fact	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	1ethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/22/09	5				01/22/09 17:49	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	84	5		5.5	DEP-SURR-	01/22/09 17:49	01/12/09 18:00
a-BHC	8081	mg/kg	0.016 K	5	0.016	0.065	319-84-6	01/22/09 17:49	01/12/09 18:00
b-BHC	8081	mg/kg	0.021 I	5	0.01	0.039	319-85-7	01/22/09 17:49	01/12/09 18:00
Lindane	8081	mg/kg	0.0032 K	5	0.0032	0.014	58-89-9	01/22/09 17:49	01/12/09 18:00
d-8HC	8081	mg/kg	0.012 K	5	0.012	0.048	319-86-8	01/22/09 17:49	01/12/09 18:00
Heptachlor	8081	mg/kg	0.01 K	5	0.01	0.041	76-44-8	01/22/09 17:49	01/12/09 18:00
Aldrin	8081	mg/kg	0.012 K	5	0.012	0.048	309-00-2	01/22/09 17:49	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.009 K	5	0.009	0.037	1024-57-3	01/22/09 17:49	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.14 I	. 5	0.12	0.5	5103-71-9	01/22/09 17:49	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.15	5	0.009	0.037	5103-74-2	01/22/09 17:49	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.0085 K	5	0.0085	0.035	959-98-8	01/22/09 17:49	01/12/09 18:00
Dieldrin	8081	mg/kg	0.037	5	0.0085	0.035	60-57-1	01/22/09 17:49	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.062	5	0.009	0.037	72-55-9	01/22/09 17:49	01/12/09 18:00
Endrin	8081	mg/kg	0.009 K	5	0.009	0.037	72-20-8	01/22/09 17:49	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.0085 K	5	0.0085	0.035	33213 -6 5-9	01/22/09 17:49	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.060	5	0.01	0.039	72-5 4- 8	01/22/09 17:49	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.0085 K	5	0.0085	0.035	7421-93-4	01/22/09 17:49	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.0065 K	5	0.0065	0.026	1031-07-8	01/22/09 17:49	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.054	5	0.0035	0.014	50-29-3	01/22/09 17:49	01/12/09 18:00
Mirex	8081	mg/kg	0.035 K	5	0.035	0.14	2385-85-5	01/22/09 17:49	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.007 K	5	0.007	0.028	53494-70-5	01/22/09 17:49	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.01 K	5	0.01	0.042	72-43-5	01/22/09 17:49	01/12/09 18:00
Toxaphene	8081	mg/kg	1,2 K	5	1.2	5	8001-35-2	01/22/09 17:49	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	· 8			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78704 CO-SB-141-3 Matrix

Soil

Date Collected

1/8/2009 15:39

Date Received 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081						•		
Date Extracted	3545a	•	01/12/09						01/12/09 18:00
Date Analyzed			1/22/09	1				01/22/09 18:00	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	71	1		13	DEP-SURR-	01/22/09 18:00	01/12/09 18:00
a-BHC	8081	mg/kg	0.0039 U	. 1	0.0039	0.016	319-84-6	01/22/09 18:00	01/12/09 18:00
b-BHC	8081	mg/kg	0.0024 U	1	0.0024	0.0096	319-85-7	01/22/09 18:00	01/12/09 18:00
Lindane	8081	mg/kg	0.0008 U	1	0.0008	0.0033	58-89-9	01/22/09 18:00	01/12/09 18:00
d-BHC	8081	mg/kg	0.0029 U	1	0.0029	0.012	319-86-8	01/22/09 18:00	01/12/09 18:00
Heptachlor	8081	mg/kg	0.0050 I	1 .	0.0025	0.01	7 6-44- 8	01/22/09 18:00	01/12/09 18:00
Aldrin	8081	mg/kg	0.0029 U	1	0.0029	0.012	309-00-2	01/22/09 18:00	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.0023 U	1	0.0023	0.0091	1024-57-3	01/22/09 18:00	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.022	1	0.0031	0.012	5103-71-9	01/22/09 18:00	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.020	1	0.0023	0.0091	5103-74-2	01/22/09 18:00	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.0021 U	1	0.0021	0.0085	959-98-8	01/22/09 18:00	01/12/09 18:00
Dieldrin	8081	mg/kg	0.0034 I	1	0.0021	0.0085	60-57-1	01/22/09 18:00	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.0035 I	1	0.0023	0.0091	72-55-9	01/22/09 18:00	01/12/09 18:00
Endrin	8081	mg/kg	0.0023 U	1	0.0023	0.0091	72-20-8	01/22/09 18:00	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.0021 U	1	0.0021	0.0085	33213-65-9	01/22/09 18:00	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.0024 U	1	0.0024	0.0096	72-54-8	01/22/09 18:00	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.0021 U	1	0.0021	0.0085	7421-93-4	01/22/09 18:00	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.0016 U	1	0.0016	0.0064	1031-07-8	01/22/09 18:00	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.00085 U	1	0.00085	0.0035	50-29-3	01/22/09 18:00	01/12/09 18:00
Mirex	8081	mg/kg	0.0085 U	1	0.0085	0.035	2385-85-5	01/22/09 18:00	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.0017 U	1	0.0017	0.0069	53494-70-5	01/22/09 18:00	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.0025 U	1	0.0025	0.01	72-43-5	01/22/09 18:00	01/12/09 18:00
Toxaphene	8081	mg/kg	0.31 U	1	0.31	1.2	8001-35-2	01/22/09 18:00	01/12/09 18:00
Percent Moisture		•							
% Moisture	_ 160.3M	%	25			0.13		01/13/09	

SunLabs Project Number TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78705

CO-SB-141-5

Matrix

Soil

Date Collected Date Received 1/8/2009 15:42 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Hold Hold			NA	1				02/10/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78706 CO-SB-142-1 Matrix

Soil

Date Collected

1/8/2009 15:46

Date Received 1/10/2009 17:20

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/22/09	10				01/22/09 18:11	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	61	10		11	DEP-SURR-	01/22/09 18:11	01/12/09 18:00
a-BHC	8081	mg/kg	0.031 K	10	0.031	0.13	319-84-6	01/22/09 18:11	01/12/09 18:00
b-BHC	8081	mg/kg	0.019 K	10	0.019	0.076	319-85-7	01/22/09 18:11	01/12/09 18:00
Lindane	8081	mg/kg	0.0063 K	10	0.0063	0.026	58-89-9	01/22/09 18:11	01/12/09 18:00
d-BHC	8081	mg/kg	0.023 K	10	0.023	0.093	319-86-8	01/22/09 18:11	01/12/09 18:00
Heptachlor	8081	mg/kg	0.02 K	10	0.02	0.08	7 6-44- 8	01/22/09 18:11	01/12/09 18:00
Aldrin	8081	mg/kg	0.023 K	10	0.023	0.093	309-00-2	01/22/09 18:11	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.018 K	10	0.018	0.072	1024-57-3	01/22/09 18:11	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.097	10	0.024	0.097	5103-71-9	01/22/09 18:11	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.093	10	0.018	0.072	5103-74-2	01/22/09 18:11	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.017 K	10	0.017	0.067	959-98-8	01/22/09 18:11	01/12/09 18:00
Dieldrin	8081	mg/kg	0.073	10	0.017	0.067	60-57-1	01/22/09 18:11	01/12/09 18:00
4,4'-DDE	8081	mg/kg	0.075	10	0.018	0.072	72-55-9	01/22/09 18:11	01/12/09 18:00
Endrin	8081	mg/kg	0.018 K	10	0.018	0.072	72-20-8	01/22/09 18:11	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.017 K	10	0.017	0.067	33213-65-9	01/22/09 18:11	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.019 K	10	0.019	0.076	72-54-8	01/22/09 18:11	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.017 K	10	0.017	0.067	7421-93-4	01/22/09 18:11	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.013 K	10	0.013	0.051	1031-07-8	01/22/09 18:11	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.0067 K	10	0.0067	0.027	50-29-3	01/22/09 18:11	01/12/09 18:00
Mirex	8081	mg/kg	0.067 K	10	0.067	0.27	2385-85-5	01/22/09 18:11	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.014 K	10	0.014	0.055	53 494 -70-5	01/22/09 18:11	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.02_K	10	0.02	0.08	72-43-5	01/22/09 18:11	01/12/09 18:00
Toxaphene	8081	mg/kg	3.2 I	10	2.4	9.7	8001-35-2	01/22/09 18:11	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	5			0.11		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78707

CO-SB-142-3

Matrix

Soil

Date Collected Date Received 1/8/2009 15:48

					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-//	2003 27120	
Parameters	Method	Units	Results	Dil Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3545a		01/12/09			_			01/12/09 18:00
Date Analyzed			1/21/09	1				01/21/09 22:31	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	%	55	11		1	DEP-SURR-	01/21/09 22:31	01/12/09 18:00
a-BHC	8081	mg/kg	0.003 U	1	0.003	0.012	31 9-84-6	01/21/09 22:31	01/12/09 18:00
b-BHC	8081	mg/kg	0.0019 U	1	0.0019	0.0075	319-85-7	01/21/09 22:31	01/12/09 18:00
Lindane	8081	mg/kg	0.00062 U	1	0.00062	0.0026	58-8 9 -9	01/21/09 22:31	01/12/09 18:00
d-BHC	8081	mg/kg	0.0023 U	1	0.0023	0.0092	319-86-8	01/21/09 22:31	01/12/09 18:00
Heptachlor	8081	mg/kg	0.002 U	1	0.002	0.0079	7 6-44- 8	01/21/09 22:31	01/12/09 18:00
Aldrin	8081	mg/kg	0.0023 U	1	0.0023	0.0092	309-00-2	01/21/09 22:31	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.0018 U	1	0.0018	0.0071	1024-57-3	01/21/09 22:31	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.015	1	0.0024	0.0096	5103-71-9	01/21/09 22:31	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.015	1	0.0018	0.0071	5103-74-2	01/21/09 22:31	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.0017 U_	1	0.0017	0.0067	959-98-8	01/21/09 22:31	01/12/09 18:00
Dieldrin	8081	mg/kg	0.013	1	0.0017	0.0067	60-57-1	01/21/09 22:31	01/12/09 18:00
4,4'-DDE -	8081	mg/kg	0.0029 I	1	0.0018	0.0071	72-55-9	01/21/09 22:31	01/12/09 18:00
Endrin	8081	mg/kg	0.0018 U	1	0.0018	0.0071	72-20-8	01/21/09 22:31	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213 - 65-9	01/21/09 22:31	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.0019 U	1	0.0019	0.0075	72-54-8	01/21/09 22:31	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.0017 U	1_	0.0017	0.0067	7421-93-4	01/21/09 22:31	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.0012 U	1	0.0012	0.005	1031-07-8	01/21/09 22:31	01/12/09 18:00
4,4'-DDT	8081	mg/kg	0.00067 U	1	0.00067	0.0027	50-29-3	01/21/09 22:31	01/12/09 18:00
Mirex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	01/21/09 22:31	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.0014 U	1_	0.0014	0.0054	53494-70-5	01/21/09 22:31	01/12/09 18:0
Methoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0079	72-43-5	01/21/09 22:31	01/12/09 18:00
Toxaphene	8081	mg/kg	0.24 U	1	0.24	0.96	8001-35-2	01/21/09 22:31	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	4			0.1		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78708 CO-SB-142-5 Matrix

Soil

Date Collected
Date Received

1/8/2009 15:50

Parameters	Method	Units	Results	Dil Factor	MDL R	L CAS Number	Date/Time Analyzed	Date/Time Prep
Hold Hold			NA	1			02/10/09	

SunLabs **Project Number**

TASK Environmental, Inc.

090111.01

Project Description **Chevron Orlando**

February 10, 2009

SunLabs Sample Number 78709 Sample Designation

CO-SB-143-1

Matrix

Soil

Date Collected Date Received 1/8/2009 15:52

Parameters	Method	Units	Results	Dii Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3545a		01/12/09						01/12/09 18:00
Date Analyzed			1/21/09	50				01/21/09 22:42	
2,4,5,6-tetrachloro-m-xylene (16-141)	8081	- %	74	50		50	DEP-SURR-	01/21/09 22:42	01/12/09 18:00
a-BHC	8081	mg/kg	0.15 K	50	0.15	0.6	319-84-6	01/21/09 22:42	01/12/09 18:00
b-BHC	8081	mg/kg	0.19 I	50	0.095	0.38	319-85-7	01/21/09 22:42	01/12/09 18:00
Lindane	8081	mg/kg	0.031 K	50	0.031	0.13	58-89-9	01/21/09 22:42	01/12/09 18:00
d-BHC	8081	mg/kg	0.12 K	50	0.12	0.46	319-86-8	01/21/09 22:42	01/12/09 18:00
Heptachlor	8081	mg/kg	0.1 K	50	0.1	0.4	7 6-44- 8	01/21/09 22:42	01/12/09 18:00
Aldrin	8081	mg/kg	0.12 K	50	0.12	0.46	309-00-2	01/21/09 22:42	01/12/09 18:00
Heptachlor epoxide	8081	mg/kg	0.09 K	50	0.09	0.36	1024-57-3	01/21/09 22:42	01/12/09 18:00
a-Chlordane	8081	mg/kg	0.54	50	0.12	0.48	5103-71-9	01/21/09 22:42	01/12/09 18:00
g-Chlordane	8081	mg/kg	0.57	50	0.09	0.36	5103-74-2	01/21/09 22:42	01/12/09 18:00
Endosulfan I	8081	mg/kg	0.085 K	50	0.085	0.34	959-98-8	01/21/09 22:42	01/12/09 18:00
Dieldrin	8081	mg/kg	0.083 K	50	0.083	0.33	60-57-1	01/21/09 22:42	
4,4'-DDE	8081	mg/kg	0.21 I	50	0.09	0.36	72-55-9	01/21/09 22:42	01/12/09 18:00
Endrin	8081	mg/kg	0.09 K	50	0.09	0.36	72-20-8	01/21/09 22:42	01/12/09 18:00
Endosulfan II	8081	mg/kg	0.085 K	50	0.085	0.34	33213-65-9	01/21/09 22:42	01/12/09 18:00
4,4'-DDD	8081	mg/kg	0.095 K	50	0.095	0.38	72-5 4- 8	01/21/09 22:42	01/12/09 18:00
Endrin aldehyde	8081	mg/kg	0.085 K	50	0.085	0.34	7421-93-4	01/21/09 22:42	01/12/09 18:00
Endosulfan sulfate	8081	mg/kg	0.06 K	50	0.06	0.25	1031-07-8	01/21/09 22:42	01/12/09 18:00
4,4'-DDT	8081	mg/kg	2.2	50	0.034	0.14	50-29-3	01/21/09 22:42	01/12/09 18:00
Mirex	8081	mg/kg	0.34 K	50	0.34	1.4	2385-85-5	01/21/09 22:42	01/12/09 18:00
Endrin ketone	8081	mg/kg	0.07 K	50	0.07	0.27	53494-70-5	01/21/09 22:42	01/12/09 18:00
Methoxychlor	8081	mg/kg	0.1 K	50	0.1	0.4	72-43-5	01/21/09 22:42	01/12/09 18:00
Toxaphene	8081	mg/kg	12 K	50	12	48	8001-35-2	01/21/09 22:42	01/12/09 18:00
Percent Moisture									
% Moisture	160.3M	%	4			0.1		01/13/09	,

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

78710 CO-SB-143-3 Matrix

Soil

Date Collected

1/8/2009 15:54

Date Received

a-BHC 8081 mg/kg 0.003 U 1 0.003 0.012 319-84-6 01/21/09 22:53 b-BHC 8081 mg/kg 0.028 1 0.0019 0.0075 319-85-7 01/21/09 22:53 d-BHC 8081 mg/kg 0.0062 U 1 0.00062 0.005 88-89-9 01/21/09 22:53 d-BHC 8081 mg/kg 0.00023 U 1 0.0002 0.0092 319-86-8 01/21/09 22:53 d-BHC 8081 mg/kg 0.0023 U 1 0.0023 0.0092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 309-00-2 01/21/09 22:53 Aldrin 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0017 0.0067 899-8-8 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0080 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0080 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-8 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0019 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0019 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0013 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0017 U 1 0.0017 0.0067 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0017 U 1 0.0017 0.0067 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0017 U 1 0.0017 0.0067 0.0067 33213-65-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0017 U 1 0.0018 0.0075	rameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Date Analyzed 1/21/09 1 01/21/09 22:53 2,4,5,6-tetrachloro-m-xylene (16-141) 8081 96 46 1 1 0 DEP-SURP. 01/21/09 22:53 02:54 0.002	ganochlorine Pesticides by EPA M	lethod 8081								
2,4,5,6-tetrachloro-m-xylene (16-141) 8081 % 46 1 1 DEP-SURR- 10,003 01/21/09 22:53 a-BHC 8081 mg/kg 0.003 U 1 0.003 0.012 319-84-6 01/21/09 22:53 b-BHC 8081 mg/kg 0.0062 U 1 0.0019 0.0075 319-85-7 01/21/09 22:53 d-BHC 8081 mg/kg 0.00062 U 1 0.00062 0.0025 0.002 319-86-8 01/21/09 22:53 d-BHC 8081 mg/kg 0.0023 U 1 0.0023 0.0092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.002 0.0092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.002 0.0092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0018 U 1 0.002 0.002 0.002 0.002 0.002 0.002 0.002 <td>te Extracted</td> <td>3545a</td> <td></td> <td>01/12/09</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>01/12/09 18:00</td>	te Extracted	3545a		01/12/09						01/12/09 18:00
2,4,5,6-tetrachloro-m-xylene (16-141) 8081 % 46 1 1 DEP-SURR- 01/21/09 22:53 a-BHC 0.001 mg/kg 0.003 U 1 0.003 0.012 319-86-6 01/21/09 22:53 a-BHC 0.01/21/09 22:53 a-BHC 0.0028 I 1 0.003 0.012 0005 319-86-7 01/21/09 22:53 a-BHC 0.0014/00 20:0006 00006 00006 00000 00000 00000 00000 00000 00000 0000	te Analyzed			1/21/09	11				01/21/09 22:53	
b-BHC 8081 mg/kg 0.0028 1 0.0019 0.075 319-85-7 01/21/09 22:53 d-BHC 8081 mg/kg 0.00062 U 1 0.00062 0.026 58-89-9 01/21/09 22:53 d-BHC 8081 mg/kg 0.0023 U 1 0.0023 0.092 319-86-8 01/21/09 22:53 d-BHC 8081 mg/kg 0.0023 U 1 0.0023 0.092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.092 319-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.092 319-86-8 01/21/09 22:53 Heptachlor epoxide 8081 mg/kg 0.0023 U 1 0.0023 0.092 309-00-2 01/21/09 22:53 Heptachlor epoxide 8081 mg/kg 0.0018 U 1 0.0018 0.0071 024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 0124-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.018 I 0.0018 0.0071 5103-71-9 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.018 I 0.0018 0.0071 5103-71-9 01/21/09 22:53 Dieldrin 8081 mg/kg 0.0017 U 1 0.0017 0.0067 959-98-8 01/21/09 22:53 Dieldrin 8081 mg/kg 0.0018 I 0.0017 0.0067 959-98-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0018 I 0.0017 0.0067 959-98-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0018 I 0.0017 0.0067 00-57-1 01/21/09 22:53 Endorin 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-25-9 01/21/09 22:53 Endorin 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-25-9 01/21/09 22:53 Endorin 8081 mg/kg 0.0018 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 Endorin aldehyde 8081 mg/kg 0.0019 U 1 0.0017 0.0067 72-24-8 01/21/09 22:53 Endorin aldehyde 8081 mg/kg 0.0019 U 1 0.0017 0.0067 72-24-8 01/21/09 22:53 Endorin aldehyde 8081 mg/kg 0.0012 U 1 0.0017 0.0067 0.0027 50-29-3 01/21/09 22:53 Endorin sulfate 8081 mg/kg 0.0012 U 1 0.0007 0.007 72-24-8 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0012 U 1 0.0007 0.007 50-29-3 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0014 U 1 0.0067 0.007 50-29-3 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0014 U 1 0.0067 0.007 50-29-3 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0014 U 1 0.0067 0.007 50-29-3 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0012 U 1 0.002 0.007 72-43-5 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0014 U 1 0.0068 0.007 72-43-5 01/21/09 22:53 Endorin ketone 8081 mg/kg 0.0012 U 1 0.002 0.007 72-43-5 01/21/09 22:5			%	46	1		1	DEP-SURR-	01/21/09 22:53	01/12/09 18:00
Lindane 8081 mg/kg 0.00062 U 1 0.00062 0.0026 58-89-9 01/21/09 22:53 d-BHC 8081 mg/kg 0.0023 U 1 0.0023 0.0092 319-86-8 01/21/09 22:53 Heptachlor 8081 mg/kg 0.0023 U 1 0.0023 0.0092 309-86-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 309-90-2 01/21/09 22:53 Aldrin 8081 mg/kg 0.0018 U 1 0.0023 0.0092 309-90-2 01/21/09 22:53 Aldrin 8081 mg/kg 0.0018 U 0.0018 0.0071 102-45-73 01/21/09 22:53 Bothdrian 8081 mg/kg 0.018 U 0.0018 0.0071 0.0071 0.0072 009-99-98-8 01/21/09 22:53 Endosulfan I 8081 mg/kg 0.0018	3HC	8081	mg/kg	0.003 U	1	0.003	0.012	319-84-6	01/21/09 22:53	01/12/09 18:00
d-BHC 8081 mg/kg 0.0023 U 1 0.0023 0.092 319-86-8 01/21/09 22:53 Heptachlor 8081 mg/kg 0.002 U 1 0.002 0.0079 76-44-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 309-00-2 01/21/09 22:53 Heptachlor epoxide 8081 mg/kg 0.0018 U 1 0.0018 1.00018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0020 1 0.0024 0.0096 5103-71-9 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.0017 102-17-3 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.0017 U 1 0.0017 0.0067 5103-71-9 01/21/09 22:53 Endosulfan I 8081 mg/kg 0.0018 <t< td=""><td>3HC</td><td>8081</td><td>mg/kg</td><td>0.028</td><td>1</td><td>0.0019</td><td>0.0075</td><td>319-85-7</td><td>01/21/09 22:53</td><td>01/12/09 18:00</td></t<>	3HC	8081	mg/kg	0.028	1	0.0019	0.0075	319-85-7	01/21/09 22:53	01/12/09 18:00
Heptachlor 8081 mg/kg 0.002 U 1 0.002 0.007 76-44-8 01/21/09 22:53 Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 309-00-2 01/21/09 22:53 Heptachlor epoxide 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.020 1 0.0024 0.0095 5103-71-9 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.0071 0107 0.007 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0017 0.007 0.007 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.0018 1 0.0017 0.0067 959-98-8 01/21/09 22:53 bridge 0.0018 mg/kg 0.0018 0.0017 0.0067 <td< td=""><td>dane</td><td>8081</td><td>mg/kg</td><td>0.00062 U</td><td>11</td><td>0.00062</td><td>0.0026</td><td>58-89-9</td><td>01/21/09 22:53</td><td>01/12/09 18:00</td></td<>	dane	8081	mg/kg	0.00062 U	11	0.00062	0.0026	58-89-9	01/21/09 22:53	01/12/09 18:00
Aldrin 8081 mg/kg 0.0023 U 1 0.0023 0.0092 309-00-2 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.020 1 0.0024 0.0096 5103-71-9 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 Dieldrin 8081 mg/kg 0.018 1 0.0017 0.0067 959-98-8 01/21/09 22:53 Dieldrin 8081 mg/kg 0.018 1 0.0017 0.0067 60-57-1 01/21/09 22:53 A,4'-DDE 8081 mg/kg 0.0080 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 A,4'-DDD 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-56-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0019 U 1 0.0019 0.0075 72-54-8 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0019 0.0075 72-54-8 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0010 0.0057 0.0057 01/21-09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0010 0.0057 0.0057 01/21-09 22:53 Endosulfan sulfate 8081 mg/kg 0.0013 1 0.00067 0.0027 50-29-3 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0040 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0040 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081	3HC	8081	mg/kg	0.0023 U	1	0.0023	0.0092	319-86-8	01/21/09 22:53	01/12/09 18:00
Heptachlor epoxide 8081 mg/kg 0.0018 U 1 0.0018 0.0071 1024-57-3 01/21/09 22:53 a-Chlordane 8081 mg/kg 0.020 1 0.0024 0.0096 5103-71-9 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.0017 U 1 0.0017 0.0067 959-98-8 01/21/09 22:53 Endosulfan I 8081 mg/kg 0.018 1 0.0017 0.0067 959-98-8 01/21/09 22:53 Dieldrin 8081 mg/kg 0.018 1 0.0017 0.0067 60-57-1 01/21/09 22:53 A,4*-DDE 8081 mg/kg 0.0080 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0019 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 3213-65-9 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endosulfan Sulfate 8081 mg/kg 0.0012 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 4,4*-DDT 8081 mg/kg 0.0012 U 1 0.0017 0.0057 0.0027 50-29-3 01/21/09 22:53 Endosulfan Ketone 8081 mg/kg 0.0014 U 1 0.0016 0.002 0.005 1031-07-8 01/21/09 22:53 Endosulfan Ketone 8081 mg/kg 0.0014 U 1 0.0016 0.0054 53494-70-5 01/21/09 22:53 Endosulfan Ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0067 0.0079 72-43-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0067 0.0079 72-43-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0067 0.0079 72-43-5 01/21/09 22:53 Endosulfan ketone 8081 mg/kg 0.0014 U 1 0.0067 0.0079 72-43-5 01/21/09 22:	ptachlor	8081	mg/kg	0.002 U	1	0.002	0.0079	76 -44- 8	01/21/09 22:53	01/12/09 18:00
a-Chlordane 8081 mg/kg 0.020 1 0.0024 0.096 5103-71-9 01/21/09 22:53 g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.0071 5103-74-2 01/21/09 22:53 Endosulfan I 8081 mg/kg 0.0017 U 1 0.0017 0.067 959-98-8 01/21/09 22:53 0.0017 D 1 0.0017 0.067 959-98-8 01/21/09 22:53 0.0017 D 1 0.0017 0.067	Jrin •	8081	mg/kg	0.0023 U	1	0.0023	0.0092	309-00-2	01/21/09 22:53	01/12/09 18:00
g-Chlordane 8081 mg/kg 0.018 1 0.0018 0.071 5103-74-2 01/21/09 22:53 Endosulfan I 8081 mg/kg 0.0017 U 1 0.0017 0.067 959-98-8 01/21/09 22:53 Dieldrin 8081 mg/kg 0.018 1 0.0017 0.067 60-57-1 01/21/09 22:53 4,4'-DDE 8081 mg/kg 0.0080 1 0.0018 0.071 72-55-9 01/21/09 22:53 Endrin 8081 mg/kg 0.0018 U 1 0.0018 0.071 72-20-8 01/21/09 22:53 Endrin 8081 mg/kg 0.0017 U 1 0.0018 0.071 72-20-8 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.067 33213-65-9 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0019 U 1 0.0019 0.075 72-54-8 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0017 U 1 0.0017 0.067 7421-93-4 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 Endrin sulfate 8081 mg/kg 0.0012 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.0013 1 0.00067 0.0027 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0013 1 0.00067 0.0027 50-29-3 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 3494-70-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.004 0.0054 3494-70-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.004 0.0054 3494-70-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.004 0.0054 3494-70-5 01/21/09 22:53	ptachlor epoxide	8081	mg/kg	0.0018 U	_1_	0.0018	0.0071	1024-57-3	01/21/09 22:53	01/12/09 18:00
Endosulfan I 8081 mg/kg 0.0017 U 1 0.0017 0.067 959-98-8 01/21/09 22:53 4,4*-DDE 8081 mg/kg 0.0080 1 0.0018 0.0071 72-55-9 01/21/09 22:53 4,4*-DDE 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endrin 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-20-8 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.067 33213-65-9 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.067 33213-65-9 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0017 U 1 0.0017 0.0067 72-54-8 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0017 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0017 0.005 1031-07-8 01/21/09 22:53 4,4*-DDT 8081 mg/kg 0.0013 1 0.00067 0.0027 50-29-3 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 3494-70-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0012 U 1 0.0014 0.0054 3494-70-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0012 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0012 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0012 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0012 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004 U 1 0.004 0.0054 8091-35-2 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.004	Chlordane	8081	mg/kg	0.020	1	0.0024	0.0096	5103-71-9	01/21/09 22:53	01/12/09 18:00
Solid Mg/kg O.018 1 O.0017 O.067 O.067 O.057 O.027	Chlordane	8081	mg/kg	0.018	1	0.0018	0.0071	5103-74-2	01/21/09 22:53	01/12/09 18:00
8081 mg/kg 0.0080 1 0.0018 0.0071 72-55-9 01/21/09 22:53 Endrin 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-20-8 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 4,4'-DDD 8081 mg/kg 0.0019 U 1 0.0019 0.0075 72-54-8 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0017 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0012 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.013 1 0.0067 0.007 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.007 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 33494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Percent Moisture	dosulfan I	8081	mg/kg	0.0017 U	1	0.0017	0.0067	959-98-8	01/21/09 22:53	01/12/09 18:00
Endrin 8081 mg/kg 0.0018 U 1 0.0018 0.0071 72-20-8 01/21/09 22:53 Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 4,4'-DDD 8081 mg/kg 0.0019 U 1 0.0019 0.0075 72-54-8 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0017 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.013 1 0.0067 0.027 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.027 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Percent Moisture	eldrin	8081	mg/kg	0.018	1	0.0017	0.0067	60-57-1	01/21/09 22:53	01/12/09 18:00
Endosulfan II 8081 mg/kg 0.0017 U 1 0.0017 0.0067 33213-65-9 01/21/09 22:53 4,4'-DDD 8081 mg/kg 0.0019 U 1 0.0019 0.075 72-54-8 01/21/09 22:53 4,4'-DDD 8081 mg/kg 0.0017 U 1 0.0019 0.0075 72-54-8 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.013 1 0.00067 0.007 50-29-3 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.0067 U 1 0.0067 0.007 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.007 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53 Percent Moisture	1'-DDE	8081	mg/kg	0.0080	1	0.0018	0.0071	72-55-9	01/21/09 22:53	01/12/09 18:00
4,4'-DDD 8081 mg/kg 0.0019 U 1 0.0019 0.075 72-54-8 01/21/09 22:53 Endrin aldehyde 8081 mg/kg 0.0012 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.013 1 0.00067 0.027 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.027 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 33494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53	drin .	8081	mg/kg	0.0018 U	1	0.0018	0.0071	72-20-8	01/21/09 22:53	01/12/09 18:00
Endrin aldehyde 8081 mg/kg 0.0017 U 1 0.0017 0.0067 7421-93-4 01/21/09 22:53 Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.013 1 0.0067 0.027 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.027 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53	dosulfan II	8081	mg/kg	0.0017 U	1	0.0017	0.0067	33213-65-9	01/21/09 22:53	01/12/09 18:00
Endosulfan sulfate 8081 mg/kg 0.0012 U 1 0.0012 0.005 1031-07-8 01/21/09 22:53 4,4'-DDT 8081 mg/kg 0.013 1 0.0067 0.027 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.027 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53 Percent Moisture	1'-DDD	8081	mg/kg	0.0019 U	11	0.0019	0.0075	72-54-8	01/21/09 22:53	01/12/09 18:00
4,4'-DDT 8081 mg/kg 0.013 1 0.0067 0.027 50-29-3 01/21/09 22:53 Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.027 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53	drin aldehyde	8081	mg/kg	0.0017 U	1	0.0017	0.0067	7421-93-4	01/21/09 22:53	01/12/09 18:00
Mirex 8081 mg/kg 0.0067 U 1 0.0067 0.027 2385-85-5 01/21/09 22:53 Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53	dosulfan sulfate	8081	mg/kg	0.0012 U	_1	0.0012	0.005	1031-07-8	01/21/09 22:53	01/12/09 18:00
Endrin ketone 8081 mg/kg 0.0014 U 1 0.0014 0.0054 53494-70-5 01/21/09 22:53 Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53 Percent Moisture	4'-DDT	8081	mg/kg	0.013	1	0.00067	0.0027	50-29-3	01/21/09 22:53	01/12/09 18:00
Methoxychlor 8081 mg/kg 0.002 U 1 0.002 0.0079 72-43-5 01/21/09 22:53 Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53 Percent Moisture	rex	8081	mg/kg	0.0067 U	1	0.0067	0.027	2385-85-5	01/21/09 22:53	01/12/09 18:00
Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53 Percent Moisture	drin ketone	8081	mg/kg	0.0014 U	1	0.0014	0.0054	53494-70-5	01/21/09 22:53	01/12/09 18:00
Toxaphene 8081 mg/kg 0.24 U 1 0.24 0.96 8001-35-2 01/21/09 22:53 Percent Moisture	ethoxychlor	8081	mg/kg	0.002 U	1	0.002	0.0079	72-43-5	01/21/09 22:53	01/12/09 18:00
		8081	mg/kg	0.24 U	1	0.24	0.96	8001-35-2	01/21/09 22:53	01/12/09 18:00
	ercent Moisture									
% Moisture 160.3M % 4 0.1 01/13/09	Moisture	160.3M	%	_. 4			0.1		01/13/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

SunLabs Sample Number Sample Designation

CO-SB-143-5

Matrix

Soil

Date Collected Date Received 1/8/2009 15:56

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Hold Hold			NA	1	-and an anestrate		*	02/10/09	

SunLabs Project Number

090111.01

TASK Environmental, Inc.

Project Description

Chevron Orlando

February 10, 2009

Footnatas

	Futilities
*	SunLabs is not currently NELAC certified for this analyte.
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
K	The value is known to be less than the reported value based on sample size, dilution or some other variable.
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
ΜI	Matrix Interference
MS	Matrix Spike
MSD	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
SD	Surrogate diluted out of range.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

February 10, 2009

Batch No: C7825	de a Beadrata - A									Sample: 69, 7867		78672	78673, 7867	74. 78675	, 78676, 78677
-	rine Pesticides b	y EPA N	<i>n</i> ethod	8081									78683, 7868		, . 55. 5, 1 557 1
TestCode: 8081-s1															_
Compound	Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %,	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number		-						1	78681	78681					
2,4,5,6-tetrachloro-m-xylene (16-141)	67							<u> </u>							
a-BHC	0.0029 U														i
<u>-BHC</u>	0.0018 U						_	<u>i</u>							<u> </u>
indane	0.0006 U	100	77	. 79	3	15	48-119	100	98	101	3	24	21-148		
I-BHC	0.0022 U	i.													
Heptachior	. : 0.0019 U	100	94	94	0	14	46-113	100	77	77	0	25	13-160		
Aldrin	0.0022 U	100	81	83	2	14	45-114	100	0.	0.	NA	25	2-164		
leptachlor epoxide	0.0017 U														
-Chlordane	0.0023 U				_			:							:
g-Chlordane	0.0017 U	:						i		-			•		
Endosulfan I	0.0016 U	:						1							
Dieldrin	0.0016 U	100	76	78	3	15	44-105	100	0	0	NA	33	0-192		:
4,4'-DDE	0.0017 U		. •		•		., 100	1	٠	J		00	J 101		
-ndrin	0.0017 U	100	89	88	1	19	30-142	100	94	84	11	42	0-207		
Endosulfan II	0.0016 U	. 100	03	•	•	10	00-142	100	-	04	•••	72	0-201		
1,4'-DDD	0.0018 U							1							i
	0.0016 U							1							
Endrin aldehyde	0.0016U							 							<u></u>
Endosulfan suffate		+ 400	 -			40	47.440	1 400	- 00	07		70	0.007		1
4.4'-DDT	0.00064 U	100	. 74	75	1	12	47-118	100	82	87	6	78	0-287		ļ
Mirex	0.0064 U							!							<u> </u>
Endrin ketone	0.0013 U													·	i
Methoxychlor	0.0019U	-i						 							
Toxaphene	0.23 U							<u> </u>			<u> </u>				
Batch No: C7829								Δ	sociated	Sample					
		5544										78689	78691, 7869	2 78604	, 78695, 78697
Test: Organochlor	rine Pesticides b	IY EPA N	JOINOR	. 8081					.con 70-	מלפל חחי			70700 7070	, , , , , , , , , , , , , , , , , , ,	
		-	VICUIOG					78	XD98, 181	00, 1010	1, 78703	78704,	18100, 1810	07, 78709	78710
TestCode: 8081-s1			victi loc					78	9698, 787	00, 7070	1, 78703	78704,	/8/06, /8/(, 78710
TestCode: 8081-s1 Compound	Blank	LCS Spike	LCS -	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS	MSD	1, 78703 RPD %		Limits MS		, 78710 Qualifiers
		LCS	LCS -	LCSD	RPD			MS	MS	MSD	RPD	QC	Limits	07, 78709 Dup	
Compound Parent Sample Number		LCS	LCS -	LCSD	RPD			MS	MS %Rec	MSD %Rec	RPD	QC	Limits	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)	Blank	LCS	LCS -	LCSD	RPD			MS	MS %Rec	MSD %Rec	RPD	QC	Limits	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141) BHC	59 0.0029 U	LCS	LCS -	LCSD	RPD			MS	MS %Rec	MSD %Rec	RPD	QC	Limits	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)	59 0.0029 U 0.0018 U	LCS Spike	LCS -	LCSD	RPD		LCS	MS Spike	MS %Rec	MSD %Rec	RPD	QC	Limits	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-letrachloro-m-xylene (16-141) 9-BHC 9-BHC indane	59 0.0029 U 0.0018 U 0.0006 U	LCS	LCS ~	LCSD %Rec	RPD %	RPD		MS	MS %Rec 78685	MSD %Rec 78685	RPD %	QC RPD	Limits MS	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141) BHC BHC indane 1-BHC	59 0.0029 U 0.0018 U 0.0006 U	LCS Spike	LCS %Rec	*Rec	RPD %	RPD	48-119	MS Spike	MS %Rec 78685	MSD %Rec 78685	RPD %	QC RPD	Limits MS	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141) -BHC -BHC -Indane LBHC -BHC	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U	LCS Spike	LCS ~ %Rec 76	%Rec 82	RPD %	15 14	48-119 46-113	MS Spike	MS %Rec 78685 88	MSD %Rec 78685	RPD %	QC RPD 24	Limits MS 21-148	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141) -BHC -BHC Indane I-BHC teptachlor Ndrin	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U 0.0022 U	LCS Spike	LCS %Rec	*Rec	RPD %	RPD	48-119	MS Spike	MS %Rec 78685	MSD %Rec 78685	RPD %	QC RPD	Limits MS	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)BHCBHCIndane 1-BHC	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U 0.0022 U 0.0017 U	LCS Spike	LCS ~ %Rec 76	%Rec 82	RPD %	15 14	48-119 46-113	MS Spike	MS %Rec 78685 88	MSD %Rec 78685	RPD %	QC RPD 24	Limits MS 21-148	07, 78709 Dup	
Compound Perent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141) 3-BHC 3-BHC indane 1-BHC leptachlor Aldrin leptachlor epoxide 3-Chlordane	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U 0.0022 U 0.0017 U 0.0023 U	LCS Spike	LCS ~ %Rec 76	%Rec 82	RPD %	15 14	48-119 46-113	MS Spike	MS %Rec 78685 88	MSD %Rec 78685	RPD %	QC RPD 24	Limits MS 21-148	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U 0.0022 U 0.0017 U 0.0023 U	LCS Spike	LCS ~ %Rec 76	%Rec 82	RPD %	15 14	48-119 46-113	MS Spike	MS %Rec 78685 88	MSD %Rec 78685	RPD %	QC RPD 24	Limits MS 21-148	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0017 U 0.0023 U 0.0017 U 0.0016 U	100 100	LCS ~ %Rec 76 79 80	82 84 87	8 6 8	15 14 14	48-119 46-113 45-114	MS Spike	MS %Rec 78685 88 88 91	MSD %Rec 78685 84 84 88	8PD %	QC RPD 24 25 25	21-148 13-160 2-164	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0022 U 0.0017 U 0.0023 U 0.0017 U 0.0016 U	LCS Spike	LCS ~ %Rec 76	%Rec 82	RPD %	15 14	48-119 46-113 45-114	MS Spike	MS %Rec 78685 88	MSD %Rec 78685	RPD %	QC RPD 24	21-148 13-160 2-164	07, 78709 Dup	
Compound Parent Sample Number 2.4.5.6-tetrachloro-m-xylene (16-141)	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U 0.0017 U 0.00017 U 0.0016 U 0.0017 U	100 100 100 100	76 79 80 76	82 84 87 83	8 6 8	15 14 14 15	48-119 46-113 45-114 44-105	MS Spike	MS %Rec 78685	MSD %Rec 78685 84 84 88	5 5 3	24 25 25 23	21-148 13-160 2-164	07, 78709 Dup	
Compound Parent Sample Number 2,4,5,6-tetrachloro-m-xylene (16-141)	59 0.0029 U 0.0018 U 0.0006 U 0.0019 U 0.0017 U 0.0017 U 	100 100	LCS ~ %Rec 76 79 80	82 84 87	8 6 8	15 14 14	48-119 46-113 45-114	MS Spike	MS %Rec 78685 88 88 91	MSD %Rec 78685 84 84 88	8PD %	QC RPD 24 25 25	21-148 13-160 2-164	07, 78709 Dup	
ompound arent Sample Number 4,5,6-tetrachloro-m-xylene (16-141) BHC BHC adane BHC epitachlor dptin epitachlor epoxide Chlordane Chlordane ddosulfan I	59 0.0029 U 0.0018 U 0.0006 U 0.0022 U 0.0019 U 0.0017 U 0.00017 U 0.0016 U 0.0017 U	100 100 100 100	76 79 80 76	82 84 87 83	8 6 8	15 14 14 15	48-119 46-113 45-114 44-105	MS Spike	MS %Rec 78685	MSD %Rec 78685 84 84 88	5 5 3	24 25 25 23	21-148 13-160 2-164	07, 78709 Dup	

Endrin ketone SunLabs, Inc.

Endrin aldehyde

Endosulfan sulfate

4.4'-DDD

4,4'-DDT

5460 Beaumont Center Blvd., Suite 520

0.0018 U

0.0016 U

0.0012 U

0.00064 U 0.0064 U

0.0013 U

Tampa, FL 33634

Laboratory ID Number - E84809

Phone: (813) 881-9401

Email: Info@SunLabsInc.com Website: www.SunLabsInc.com

Page QC-1 of 2

Quality Control Data

Project Number

TASK Environmental, Inc.

090111.01

Project Description

Chevron Orlando

-February 10, 2009

Batch No:	C7829								As	ssociated	Sample	s_				
Test:	Organochlorine	Pesticides h	V FPA N	/lethor	1 2021				78	3685, 786	86, 7868	7, 78688				78695, 7869
	_	r esticides b	/ y C	neuloc	1 0001				:78	3698, 78	700, 7870	1, 78703	, 78704, 7	8706, 7870	7, 78709	, 78710
TestCode:	8081-s1								 -							,
Compound	٠	Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC I RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number			T							78685	78685					
Methoxychlor		0.0019 U	_			i										
Toxaphene		0.23 U	<u> </u>													
Batch No:	C8057											_				
Jaion No.			`				,				Sample:					
Test:	Organochlorine	Pesticides b	y EPA N	lethoo	l 8081				/ 0	,, , o	130, 1003	0, 10102				
TestCode:	8081-s1															
Compound		Blank	LCS	LCS	LCSD	RPD	QC1	_imits	MS	MS	MSD	RPD	QC	Limits	Dup	Qualifiers
20	·		Spike	%Rec		%	RPD	LCS	Spike	%Rec	%Rec	%	RPD	MS	RPD	
Parent Sample Number		-								78690	78690					:
4,5,6-tetrachloro-m-xyle	lene (16-141)	62						;								
-BHC		0.0029 U														
-BHC		0.0018 U	1													
indane		0.0006 U	100	64	69	8_	15	48-119	100	72	77	7	24	21-148		
I-BHC		0.0022 U														
Heptachlor		0.0019 U	100	63	68	8	14	46-113	100	73		5	25	13-160		<u>i</u>
ldrin .		0.0022 U	100	64	68	6	14	45-114	100	72	75 _	4	25	2-164		
leptachlor epoxide		0.0017 U														<u> </u>
-Chlordane		0.0023 U	-								_					<u> </u>
-Chlordane		0.0017 U														
ndosulfan 1		0.0016 U	.													· - ····
Dieldrin		0.0016 U	100	. 66	71	<u>7</u>	<u>1</u> 5	44-105	100	. 0	0	- Μ̈́Ą	33	0-192		
,4'-DDE		0.0017 <u>U</u>									:	- :				4
ndrin		0.0017 U	100	103	110		19	30-142	100	0_	0	NA_	42	0-207		<u> </u>
ndosulfan II		0.0016 U	4							 .						
,4'-DDD		0.0018 U														
		0.0016 U	-j													
		0.004041														
ndosulfan sulfate		0.0012U	400	404	404			47 440	400			A1A	70	0.007		
Endrin aldehyde Endosulfan sulfate 4,4'-DDT Mirex		0.0012 U 0.00064 U 0.0064 U	100	101	104	3	12	47-118	100	0	0	ŊĄ	78	0-287		

* indicates value is outside control limits for %Recover	var	areater than	accentance	criteria for RPD

	7 55117513
1 .	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
MSA	The results of the matrix spike are out of range due to a high amount of target analyte(s) in the original sample.
Q1	The result for the spike(s) were not within acceptable control limits. However, the LCS data was within acceptable control limits. Therefore the poor spike results can be attributed to matrix.
U	Compound was analyzed for but not detected.

Footnotes

Methoxychlor

Client Name:	TASK	· .			SunLabs	Project	# C	,4	01	11.	0	1					Project Name:	Cherm	Mardo
Contact: _					Bottle Typ	e	2							\Box			Project #:	ED 21	5
Address:	27751 Lake Jen	1Rd.			Preservati	ve	I										PO #:		
_	Mount Dora f	<u>L 327</u>	٧٢		Matrix		SO				[Alt Bill To:	Arcad	5
Phone / Fax:	352 383-01	11-7 -			Analysis /	Method	4	abla										Allen	Just .
E-Mail:					Reque		Ř.	i i	- 1	- 1	ı	ı	- [ı			J
					ļ		12		· 1		1	j	- [[Due Date Requ	ested:	
3 malas	Sample Description		San	nple	Sample	# of	SOR!			ł		1	Ì		ļ				
	<u> </u>	•		ațe	Time_	Bottles											FDEP Pre	Approval site	
15000	CO. SB. 126 1		1/8/	109	0910	1	1		1								Curre	nt rates	Old rates
15000	(0 SB. 126 3'		7 /		09.18		V		\dashv								Cash rates		
	CO. SB . 127.1'				0955	1 3 3	<u> </u>	lacksquare									Remarks / Com	ments:	1
	CO. SB. 17 7.3'		\Box		1056	1	<u>~</u>			1				\neg					ſ
	(0. SB. 128 · 1'		\sqcup		1125		· 1												J
	CU.SB. 128 3'		Ш		1129		~										٠	-	1
	CO. SB . 179.1'	<u></u>			1017	1,	<u> </u>							$\stackrel{\cdots}{-}$				~	
	(U. SB. 1293'		\sqcup		1019		<u>~</u>							$\overline{}$					
	CV · SB · 130 · 1		$\sqcup \bot$		1037		<u></u>							\neg					1
	(0. SB.130.31				1041		۷,		\dashv	}				~—					1
EU/S0071/3	10.5B .131.1.	7	\vdash		1108		1												Í
	M.SB.131.3	,	\vdash		1113		V	 				-				\dashv			.].
Halo: Hal	<u> 10 . SB . 132 . 1</u>	,	$\dashv T$	/	4.38	_+_	1	\vdash						~					. }
	(0,5B, 132,	Diferent No.			1/9/			١	- 100	or contract	61187	V168	EN KIZ	90	VIN IV.	#854 9	JERIOFO TOA	THE SALES	SEATER SEE
Sampler Signature	/ Date:	Printed Nar			· . /		1.	i i				并					TA RETURN		
MV	1/8/09	nicol	e De	tn	isky//	Arcas	25	.	Relin	quish			2121515				ed To:	Date:	Time:
Bottle Type Codes:		Preservative C					_ <u> </u>		4	1	Z	? //	nia	,	7	7			1
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlo	_	+ lce	S = Sulfuric	Acid + Ice			$\sqrt{1}$	7	10		rve	1	} (la de	W.	100	1 1
GA = Glass Amber	T = Tedlar Beg	t = loe only				OFW, + los			Relin	quish	ed By	<u>/:</u>			Relin	quish	ed Jo:	Date: 09	Time:
P = Plastic	O = Other	N = Nitric Acld	+ tce		O = Other (S				K	\Im		. (Jİ		ےا	_/	()	1 Jakor	
S = Soil Jar					•	• • •				<u>/</u> 1(≈	JU	1	X	_ ~	1	1	X~	1110198	1350
Matrix Codes;	SO = Soil	internal USA	50						Relin	quish	ed By	<i>i</i> :			Relin	quish	ed To:	Date:	Time:
A = Alr.	SOL = Solid	Sanction	in the															İ	1
DW ≈ Drinking Water	SW = Surface Water	Clargoy, sopi	Post.			Self NV (19)	9								L			<u> </u>	
GW ≈ Ground Water	W = Water (Blanks)	a legal of the				2 M (V			Relin	quish	ed By	/ :			Relin	quish	ed To:	Date:	Time:
SE = Sediment	O = Other (Specify)	Sar Da Ball				SE VINEN]			1 .	} }
		Santaryn	low			YANDA			-					=	١			<u></u>	
a a Pama		Software you			ree i	TO THE STATE OF			ľ		E40	n Da-					i bs, inc. Suite 520, Tami	na Florida 300	. I
	e (V) ANDENA E	Array base				- X 1. W			,-		. 540	o Des	Pho	n Cel	nær B 13 -8 81	ıva., ∶ 1-940	Suite 520, Tam _i)1 / Fax: 813-35	ла, гіонца эзр 4-4661	.
Keceiveo on	DE CAMPAGNA DE LA COMPAGNA DE LA COM	Propertichia.								•		e-mai					om www.Sur		·
建工作和企业的企业	和的现在形式过去过多数的	MARKET	用語的	加加	推出 的现在	在 为1988年	图的语	水和社						=-					

Client Name:	TASK		SunLa	bs Project	# C	90	111.C	1				Project Name:	Cherror	Orkado
Contact:	Susan Tobin		Bottle T	уре	S							Project #:	60219	Š
Address:	27751 lake 7em	69	Preserv	ative	工							PO#:		
•	Mt Dora Fi =	32157	Matrix		SO							Alt Bill To:	Arcadi	
Phone / Fax:	352. 383.071	7	Analysis	/ Method	1					T]	Allen	Tust
E-Mail :			1 -	quested	B			İ					•	J
•				•		·	1 1		- 1	1		Due Date Requ	ested:	· · ·
	Sample Description	Sar	mple Sampl	e #of	100	- 1	\ \		1		1	i .		
Stanoe#		rig	LE PATE	Bottles	123	1	1 1		- 1	- (1 1	FDEP Pre/	Approval site	
	(0.5B.133.1'		19 1/8/0		1	_	_		\neg	\neg		1 — —	nt rates	Old rates
	CO SB 133.3		5/11/	+ 7	17	_	-		_	_		Cash rates		
	(1) SR 134 1		3	 	1		_		_	_		Remarks / Com		
	(0. SR 1343			 	1	$\neg \uparrow$	- -		\neg	\neg	 			j
	CO. SB .135.1		57		1	-	1-	-	一十			$\Theta = hn$	11 for a	analysis
	(0 SB 135		00	+-;-	17				$\neg \uparrow$	_	_		IND AM	, (, , , , ,
	M. CB. 136.1	14		- - - - - - - - - - 	ブ	_	1		.	1		1 Peria	ing curie	IUTING
	(0. SR 136.3		36	1 :	17	$\neg \uparrow$						Samo	ou locas	pon
	CO.SB 136.5		39	+	17				_			Rosu	13 -	
	CO. SB. 137. 1'		49	+			_							_
	10 SR. 137 3	• 14		+-;-	17							Teleto	MAllen	Tuct
	(0.5B./37.5)			+-;-	17			\vdash		\neg		1	or of the Con	J^{μ} > I
	CO.SB. 138.1	1/5			1	_						1		l
	CO.SB. 138.3		734 V	+ i	17	_			-	\neg		1		. }
Sampler Signature		Printed Name / /	Affiliation:			籍		SUN	ABSI	NCERE	ERVES	HERIGITATOR	ICE FOR UNIO	SED/ESSE
//	1 /2 /10			11	f.							ONO REALIEN		
[VVX	(1/8/04	nicolepe	troskil	Arca	idis	R	elinguish				Relipéuis		Date:	Time:
Bottle Type Codes:	- / - /	Preservative Codes;	1/				41	L	///_		11/			1 1
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochloric Acid	d+loe S=Sulfi	ıric Acid + Ice		Œ	X77	<u> 1 U</u>	XIV	ur	1 1	with		
GA = Glass Amber	T = Tedlar Bag	l = Ice only	VS = Me	OH, OFW, + Ice		R	efinquist	ned By	r:		Relinquis	hed To:	Date:	Time:
P = Plastic	O = Other	N = Nitric Acid + Ice	O = Othe	r (Specify)		f		3	1		- 20	(a) (b)	111112	122
S = Soft Jar							16	<u>U</u>	\mathcal{U}	•	1/1/1	We.	11/12/103	1720
Matrix Codes:	SO = Soil	alema Usa Onig				R	elinquist	ned By		-	Reilinguis	hed To:	Date:	Time:
A = Air	SOL = Solid	Senule Condition Un	or receipt											1
DW = Orinking Water	SW = Surface Water	Costa, Seas Stude		V - 15 - 1							<u> </u>		<u> </u>	
GW = Ground Water	W = Water (Blanks)	Shapine bills presche			Si e	R	elinquist	ned By	/ :		Relinguis	hed To:	Date:	Time:
SE = Sediment	O = Other (Specify)	Sample combines in									Ì		-	
		Sample Even (1994)		CONTR									<u> </u>	<u> </u>
ratenca		Sanger Volumens		(Yan							SunL	abs, Inc.		
		发起就是		NEW PROPERTY.				546				Suite 520, Tamp		34
Received on	cer (Y.) Nizi NA	Proper companies as	preservetives 2	(Explain								01 / Fax: 813-35- com www.Sun		11
			建制網絡						e-inail:	വ	IIILAUSINC.	com www.Sun		

Client Name:	TASK	_		SunLab	s Project	# C	90	111	01				Projec	t Name	Chevn	nochudo
Contact:	Susan Tobin			Bottle Typ		S		TT	$\neg \gamma$	\top	Ï		P	roject#	-60Z	5
Address:	27751 Late Ten	124		Preservat	ive	II					1		7	PO#		
	MI Dora FL 32			Matrix		SU	_ _	1	\neg	1			7 AI	t Bill To	Arcas	is
Phone / Fax:	352, 383.071	7		Analysis /	Method	1					1		7		Alle	1 Tust
E-Mail :				Requ		R	ļ	1 1			1					المراك
				`			i	1 1		1	1	1 1	Due Da	te Requ	ested:	
	Sample Description		Sample	Sample	# of	8		1 1			1					
			Date	Time	Bottles	808		1 1		- 1	1	1 1	FC	EP Pre	Approval site	
	CO.SB.138.5'	(K)	1/8/0	1 1508	,	ロ		1 1						_	ent rates	Old rates
	CO. SB. 139 · 1		777	1510	/	N								sh rate		
	CO. SB. 139.3	,		1512	,								Remark	s / Com	ments:	
	CO.SB. 139.5	· (AC)		1/5/5	,	1	\top	1 1					7		•	
E-2. K. 316	CO. SB. 140.1'			1526	,								T(X)=	ml.	for and	alysis 1
	CO.SB. 140.3	,		1529	,			\top		1			7	1000	1	
	M.SB-140.5	()		1531	. 4	1		1	-			-	7	ren	OING CO	rielating Lesults.
	M. SB. 141.1'			1536	,			1						Sam	Die Toc. 1	Lesults.
	10.58.141.3'			1539	7								7	+ (4 . L	- ,
	CO.SB-141.5	· (R)		1542	1	V							7	ele	iom Alla	en Just
	10 SB: 142.1	•		1546	1	1					1		7			
	(0.5B.142.3	3'		1548	1	U							7]
	CO.SB. 142.5	(*)		1550	1			\Box								
	CO.SB: 143.1'	'	1	11557	1	7								_		
Sampler Signature	/ Date:	Printed Nan	ne / Affilia	ation:		_			SUNE	UB IV	G RE	ERVES	THERIO	111(1)	ELECTION	ISEO E
	1/0/	l ,		1.1	1	۲.			N/E	UAKE				TURK	UNUSEDSA	/etes
nu	18109	nicole	Petri	isky/	Arcad	<u>,s</u>	Reli	nguish	eg By	1		Relinqu	shed To:	1	Date:	Time:
Bottle Type Codes:		Preservative Co		- 7			19	A	41	M	11	1	1000	4	1	1
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlor	ric Ackd + los	S = Sulfuric	Acid + Ice		(42		<u>~</u>				K.d.			
GA = Glass Amber	T = Tedlar Bag	i = loe only		VS = MeOH	I, OFW, + Ice		Reli	nquish	ed By:	ı		Relinqu	ished To:		Date:	Time:
P ≈ Plastic	O = Other	N = Nitric Acid	+ lce	O = Other (Specify)		¥	┥.		4		1-2/	20		1/1.03	1720
S ≈ Soll Jar		<u> </u>						4	<u>. </u>	<u> </u>	<u> </u>	M		<u>. </u>	111010	1720
Metrix Codes;	SO = Soil	illenia (La c					Reli	nguish	ed By:			Relinqu	ished To:		Date:	Time:
A ≈ ÀÎr~	SOL = Solid	Same trial	in leave									1				Y-
DW = Drinking Water	SW = Surface Water	Carriery Sees	ment of		Y IX IX									<u> </u>	<u> </u>	<u> </u>
GW = Ground Water	W = Water (Blanks)		and the state of		Y-IN (O	9	Rel	inquish	ed By:			Relinqu	ished To:		Date:	Time:
SE = Sediment	O = Other (Specify)		ned much									ĺ				[[
		Sample with	hall on the									<u> </u>			<u></u>	1
# Steme		COT LOT VOLU	ne for ell an		No. No.				E400	D			Labs, Inc		- Fl. 12: 60:	
		We has head	erape free						546U				i., Suite 52 1401 / Fax:		pa, Florida 330 4-4661	034
SKECE VEG OIL	cerció V. N. ANATO	Proper comm	ens erro pre	ervatives (2)	y i i				е-						Labsinc.com	Щ
		洲的形成果		是對於中海	13件编号											<u></u>

Client Name:	TASK .			SunLabs	Project	# (\mathcal{S}^{C}	11101	.0	1			•	Project N	lame: Chevin	m Orlando
	Susan Tobin			Bottle Typ		15				\Box				Proj	ect#:	-15
Address:	27751 Lake Tem	Rd.		Preservati	ve	I								7 :	PO #:	L
•	M. Dora Fr 32	757		Matrix		So			1					Alt B	ill To: ATCAC	tis.
Phone / Fax:	352.383.07			Analysis /	Method									7	_ Aller	1 Tu St _
E-Mail :	-			Reque		goo	1		1	1 1	ŀ	ļ				J. 3
				'		<u> </u> 2	'	1	1					Due Date	Requested:	
	Sample Description	1	Sample	Sample	# of	<u>~</u>										
		•	Date	Time	Bottles	808				1 1				FDE	P PreApproval site	
	CO.SB.143 @ 3	31	1/8/09	1554	1	1			\top	1					Current rates	Old rates
	CO.SB.143 (9) 5	· (*)	7.50	1556	1	/	_			11	$\neg \uparrow$			Cash	rates	
	CALIBOTE CA			7-74	<u> </u>				+-	† †				Remarks /	/ Comments:	
		_				 		 	 	† -					·	,
						\vdash	_		+			\neg		┥ _		'
						 			1	1				T 🔊	1.27 Fox	Ang Oral
	 					<u> </u>			+					7 (0)	Mala 111	MARIN
	<u>. · · · </u>					<u> </u>			╁	1		· · · · · ·		7	hold for Results.	•
			_						1	1 -	$\neg \neg$		_	7	1011411	
			<u> </u>						1					7	ROSULTS.	
	· · · · · · · · · · · · · · · · · · ·					 				1 1						
						1			—					7 4	Telecom A	Jan Kich
															1-46(0M) A	IMU MST
Same Signature	e / Date:	Printed Nar	ne / Affiliat	ion:					#SU	WARS	ING	RE	GRVES	THERIGHT	TO BILL FOR THE	TO E DE SERVICIO
1/1.11	John	1	_		M	1					NED	SAN	HE S	NID (O REIS	IRM UNUSED SA	WIES TO
Y MUX	1/8/09	1110	le pet	rosky	1440	Nd	1}_	Relingui	shegi E	By) n			Relina	ished To:	Date:	Time:
Bottle Type Codes:		Preservative C	odes;		7			LYA	17	7 V 2	NI	ارير	4	1 12 6/	1/4/08	. [
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlo	ric Acid + Ice	S = Sulfuric	Add + Ice			\triangle	, ,	·					. 7 77	
GA = Glass Amber	T = Tedlar Bag	I = Ice only		VS = MeOH	I, OFW, + Ice			Relinqui	shed E	Зу:	-1		Relinqu	ished To:	Date:	Time:
P ≃ Plastic	O = Other	N = Nitric Acid	+ fce	O = Other (Specify)			1	A	₹)			2 0	1/10/08	1720
S = Soil Jar	<u> </u>								4				<u></u>	$\frac{\sim}{\sim}$	17:01-0	11120
Matrix Codes:	SO = Soil	internal vest	NO EN					Relinqui	shed E	Зу:			Relinqu	ished To:	Date:	Time:
A = Air	SOL = Solid	Sale Cond											Ì			1
DW = Drinking Water	SW = Surface Water	Clasory Seal			200								<u> </u>			
GW = Ground Water	W = Water (Blanks)	Stibing	allectres 7		Y/CV	O.		Relinqui	shed l	Зу:			Relinqu	ished To:	Date:	Time:
SE = Sediment	O = Other (Specify)	Sample Conta											1		1	
			Autor from										<u> </u>			
Jeno		Simple Volu			N. W.									Labs, Inc.		
		Alevas had	No.			M			54	60 Bea	umor	nt Ce	nter Blvo	I., Suite 520,	Tampa, Florida 33	634
Receivedon	cechy JN ANA II	Proper contain						XII		a mai	Phol -tet-	ne: 81	13-001-5 mLabele	9401 / Fax: 8	13-354-4661 w.SunLabsInc.com	
		US SURFER								e-ma	ii. III/O	ധ്രാധ		C.COIII WW	m.Guillausiile.Quill	

April 26, 2010

Susan Tobin TASK Environmental, Inc. 27751 Lake Jem Road Mount Dora, FL 32757

Re:

SunLabs Project Number:

100408.07

Client Project Description:

Chevron Orlando

Dear Mrs. Tobin:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
100017	CO-GW-MW-49D	4/5/2010
100018	CO-GW-MW-29D	4/5/2010
100019	CO-GW-MW-11S	4/5/2010
100020	CO-GW-MW-47D	4/5/2010
100021	CO-GW-MW-48D	4/5/2010
100022	CO-GW-MW-23M	4/6/2010
100023	CO-GW-MW-15S	4/6/2010
100024	CO-GW-MW-115S	4/6/2010
100025	CO-GW-MW-32D	4/6/2010
100026	CO-GW-MW-30D	4/6/2010
100027	CO-GW-MW-41D	4/6/2010
100028	CO-GW-MW-44S	_. 4/6/2010
100029	CO-GW-MW-44D	4/6/2010
100030	CO-GW-MW-45S	4/6/2010
100031	CO-GW-MW-45D	4/6/2010
100032	CO-GW-MW-16S	4/7/2010
100033	CO-GW-MW-16D	4/7/2010
100034	CO-GW-MW-36S	<i>4/</i> 7/2010
100079	CO-GW-MW-1D	4/8/2010
100080	CO-GW-MW-101D	4/8/2010
100081	CO-GW-MW-36D	4/8/2010
100082	CO-GW-MW-50S	4/8/2010
100083	CO-GW-MW-50D	4/8/2010
100084	CO-GW-EQBK-1	4/8/2010
100085	CO-SO-COMP-1	4/8/2010
100086	TCLP Leachate/100085 (CO-SO-COMP-1)	

SunLabs, Inc.

Cover Page 1 of 2

Phone: (813) 881-9401

5460 Beaumont Center Blvd., Suite 520
Unless Otherwise Noted and Where Applicable:

Info@SunLabsInc.com Email: Website: www.SunLabsInc.com

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer

Vice President, Laboratory Operations

Enclosures

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100017 CO-GW-MW-49D Matrix .

Groundwater

Date Collected

4/5/2010 14:21

Date Received 4/8/2010 08:15

Parameters	Method	Units	Results	Dii Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochiorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 13:09	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	124	1		1	DEP-SURR-	04/15/10 13:09	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 13:09	04/12/10 16:30
a-BHC	8081	ug/L	1.2	20	0.046	0.18	319-84-6	04/18/10 13:16	04/12/10 16:3
b-ВНС	8081	ug/L	0.55	1	0.003	0.012	319-85-7	04/15/10 13:09	04/12/10 16:30
d-BHC	8081	ug/L	5.0	20	0.046	0.18	319-86-8	04/18/10 13:16	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 13:09	04/12/10 16:3
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 13:09	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 13:09	04/12/10 16:3
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 13:09	04/12/10 16:3
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 13:09	04/12/10 16:3
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 13:09	04/12/10 16:3
Endosulfan I	8081	ug/L	0.45	1	0.0019	0.0076	959-98-8	04/15/10 13:09	04/12/10 16:3
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 13:09	04/12/10 16:3
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 13:09	04/12/10 16:3
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 13:09	04/12/10 16:3
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 13:09	04/12/10 16:3
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 13:09	04/12/10 16:3
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76-44-8	04/15/10 13:09	04/12/10 16:3
Heptachlor epoxide	8081	ug/L	0.0022 U	11	0.0022	0.0088	1024-57-3	04/15/10 13:09	04/12/10 16:3
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 13:09	04/12/10 16:3
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 13:09	04/12/10 16:3
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 13:09	04/12/10 16:3
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 13:09	04/12/10 16:3
Total Organic Carbon								l	
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	25.8	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100018 CO-GW-MW-29D Matrix

Groundwater

Date Collected

4/5/2010 15:14

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081					•			
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 13:19	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	51	1		1	DEP-SURR-	04/15/10 13:19	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 13:19	04/12/10 16:30
a-BHC	8081	ug/L	0.029 I	10	0.023	0.092	319-84-6	04/18/10 13:40	04/12/10 16:30
b-BHC	8081	ug/L	0.15	1	0.003	0.012	319-85-7	04/15/10 13:19	04/12/10 16:30
d-BHC	8081	ug/L_	0.31	1	0.0023	0.0092	319-86-8	04/15/10 13:19	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 13:19	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 13:19	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 13:19	04/12/10 16:30
4,4'-DDE	8081	ug/L_	0.0017 U	1	0.0017		72-55-9	04/15/10 13:19	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 13:19	04/12/10 16:30
Dieldrin	8081	ug/L_	0.0014 U	1		0.0056	60-57-1	04/15/10 13:19	04/12/10 16:30
Endosulfan I	8081	ug/L	0.15	1		0.0076	959-98-8	04/15/10 13:19	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1		0.0072	33213-65-9	04/15/10 13:19	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 13:19	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018		72-20-8	04/15/10 13:19	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1		0.0076	7421-93-4	04/15/10 13:19	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1		0.0064	53494-70-5	04/15/10 13:19	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1		0.0096	76 -44- 8	04/15/10 13:19	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1		0.0088	1024-57-3	04/15/10 13:19	
Lindane	8081	ug/L	0.0024 U	1		0.0096	58-89-9	04/15/10 13:19	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1			72-43-5	04/15/10 13:19	
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 13:19	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 13:19	04/12/10 16:30
Total Organic Carbon									
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	68.8	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100019

CO-GW-MW-11S

Matrix

Groundwater

Date Collected Date Received 4/5/2010 15:32

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA	Method 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 13:30	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	55	1		1	DEP-SURR-	04/15/10 13:30	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 13:30	04/12/10 16:30
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	04/15/10 13:30	04/12/10 16:30
b-BHC	8081	ug/L	0.003 U	1	0.003	0.012	319-85-7	04/15/10 13:30	04/12/10 16:30
d-BHC ·	8081	ug/L	0.0054 I	. 1	0.0023	0.0092	319-86-8	04/15/10 13:30	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 13:30	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 13:30	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 13:30	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 13:30	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 13:30	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 13:30	04/12/10 16:30
Endosulfan I	8081	ug/L	0.022	1	0.0019	0.0076	959-98-8	04/15/10 13:30	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 13:30	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 13:30	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 13:30	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 13:30	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 13:30	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76-44-8	04/15/10 13:30	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 13:30	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 13:30	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 13:30	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 13:30	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 13:30	04/12/10 16:30
Total Organic Carbon									
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	2.83	1	0.27	1.1		04/11/10 13:47	

SunLabs **Project Number**

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100020 CO-GW-MW-47D Matrix

Groundwater

Date Collected

4/5/2010 16:17

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	lethod 8081		·						
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 13:41	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	73	1		1	DEP-SURR-	04/15/10 13:41	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 13:41	04/12/10 16:30
a-BHC	8081	ug/L	0.023 U_	10	0.023	0.092	319-84-6	04/18/10 14:04	04/12/10 16:30
b-BHC	8081	ug/L	1.2	10	0.03	0.12	319-85-7	04/18/10 14:04	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	111	0.0023	0.0092	319-86-8	04/15/10 13:41	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 13:41	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 13:41	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 13:41	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 13:41	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 13:41	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	11	0.0014	0.0056	60-57-1	04/15/10 13:41	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 13:41	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 13:41	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 13:41	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 13:41	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 13:41	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 13:41	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44 -8	04/15/10 13:41	04/12/10 16:30
Heptachlor epoxide	8081	ug/L -	0.0022 U	_1		0.0088	1024-57-3	04/15/10 13:41	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 13:41	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	. 1	0.0018	0.0072	72-43-5	04/15/10 13:41	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 13:41	04/12/10 16:30
Toxaphene	8081	ug/L_	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 13:41	04/12/10 16:30
Total Organic Carbon							•		
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	.mg/L	340	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number TASK Environmental, Inc.

100408.07

Project Description
Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100021

CO-GW-MW-48D

Matrix

Groundwater

Date Collected Date Received 4/5/2010 16:44

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:3
Date Analyzed			4/15/10	1				04/15/10 14:24	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	78	1		1	DEP-SURR-	04/15/10 14:24	04/12/10 16:3
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 14:24	04/12/10 16:3
a-BHC	8081	ug/L	0.012	1	0.0023	0.0092	319-84-6	04/15/10 14:24	04/12/10 16:3
b-BHC	8081	ug/L	0.27	1	0.003	0.012	319-85-7	04/15/10 14:24	04/12/10 16:3
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 14:24	04/12/10 16:3
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 14:24	04/12/10 16:3
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 14:24	04/12/10 16:3
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 14:24	04/12/10 16:3
4,4'-DDE	8081	ug/L	0.0017 U	11	0.0017	0.0068	72-55-9	04/15/10 14:24	04/12/10 16:3
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 14:24	04/12/10 16:3
Dieldrin	8081	_ug/L_	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 14:24	04/12/10 16:3
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 14:24	04/12/10 16:3
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 14:24	04/12/10 16:3
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 14:24	04/12/10 16:3
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 14:24	04/12/10 16:3
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 14:24	04/12/10 16:3
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 14:24	04/12/10 16:3
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/15/10 14:24	04/12/10 16:3
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 14:24	04/12/10 16:3
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 14:24	04/12/10 16:3
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 14:24	04/12/10 16:3
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 14:24	04/12/10 16:3
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 14:24	04/12/10 16:3
Total Organic Carbon		,							
Date Analyzed			4/11/10 57	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	3.81	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Oriando

April 26, 2010

SunLabs Sample Number Sample Designation

100022

CO-GW-MW-23M

Matrix

Groundwater

Date Collected

4/6/2010 10:05

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 14:34	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	66	1		1	DEP-SURR-	04/15/10 14:34	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	30 9 -00-2	04/15/10 14:34	04/12/10 16:30
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	04/15/10 14:34	04/12/10 16:30
b-ВНС	8081	ug/L	0.018	1	0.003	0.012	319-85-7	04/15/10 14:34	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 14:34	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 14:34	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 14:34	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 14:34	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 14:34	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 14:34	04/12/10 16:30
Dieldrin	8081	ug/L	0.0025 I	1	0.0014	0.0056	60-57-1	04/15/10 14:34	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 14:34	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 14:34	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 14:34	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 14:34	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 14:34	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 14:34	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/15/10 14:34	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	11	0.0022	0.0088	1024-57-3	04/15/10 14:34	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 14:34	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 14:34	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 14:34	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 14:34	04/12/10 16:30
Total Organic Carbon									
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	2.91	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number

100023

Sample Designation

CO-GW-MW-15S

Matrix

Groundwater

Date Collected

4/6/2010 10:40

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081							•	
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 14:45	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	113	1		1	DEP-SURR-	04/15/10 14:45	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 14:45	04/12/10 16:30
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	04/15/10 14:45	04/12/10 16:30
b-BHC	8081	ug/L	0.003 U	1	0.003	0.012	319-85-7	04/15/10 14:45	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 14:45	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 14:45	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 14:45	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 14:45	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 14:45	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 14:45	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 14:45	04/12/10 16:30
Endosulfan I	8081	ug/L	0.099	1	0.0019	0.0076	959-98-8	04/15/10 14:45	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 14:45	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 14:45	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 14:45	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 14:45	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 14:45	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -41- 8	04/15/10 14:45	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 14:45	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 14:45	04/12/10 16:30
Methoxychlor	. 8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 14:45	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 14:45	04/12/10 16:30
Toxanhene	8081	ua/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 14:45	04/12/10 16:3

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100024

CO-GW-MW-115S

Matrix

Groundwater

Date Collected

4/6/2010 10:40

Date Received 4/8/2010 08:15

Parameters	Method	Units	Results	DII Facto	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081					·			
Date Extracted	3510c	•	04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 14:56	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	128	1		1	DEP-SURR-	04/15/10 14:56	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U_	11	0.002	0.008	309-00-2	04/15/10 14:56	04/12/10 16:30
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	04/15/10 14:56	04/12/10 16:30
b-BHC	8081	ug/L	0.003 U	1	0.003	0.012	319-85-7	04/15/10 14:56	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 14:56	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 14:56	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1.	0.0021	0.0084	5103-74-2	04/15/10 14:56	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 14:56	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 14:56	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	11	0.002	0.008	50-29-3	04/15/10 14:56	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 14:56	04/12/10 16:30
Endosulfan I	8081	ug/L	0.10	11	0.0019	0.0076	959-98-8	04/15/10 14:56	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 14:56	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 14:56	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 14:56	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 14:56	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53 494 -70-5	04/15/10 14:56	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1			76 -44- 8	04/15/10 14:56	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 14:56	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 14:56	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 14:56	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 14:56	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 14:56	04/12/10 16:30

SunLabs Project Number TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100025

CO-GW-MW-32D

Matrix

Groundwater

Date Collected Date Received 4/6/2010 11:02

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	1ethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 15:11	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	47	1		1	DEP-SURR-	04/15/10 15:11	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 15:11	04/12/10 16:30
a-BHC	8081	ug/L	0.34	1	0.0023	0.0092	319-84-6	04/15/10 15:11	04/12/10 16:30
b-BHC	8081	ug/L	0.70	1	0.003	0.012	319-85-7	04/15/10 15:11	04/12/10 16:30
d-BHC	8081	ug/L	0.82	1	0.0023	0.0092	319-86-8	04/15/10 15:11	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 15:11	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 15:11	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 15:11	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 15:11	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 15:11	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 15:11	04/12/10 16:30
Endosulfan I	8081	ug/L	0.10	1	0.0019	0.0076	959-98-8	04/15/10 15:11	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 15:11	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 15:11	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 15:11	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 15:11	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 15:11	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/15/10 15:11	04/12/10 16:3
Heptachlor epoxide	8081	ug/L	0.0022 U	1 .	0.0022	0.0088	1024-57-3	04/15/10 15:11	04/12/10 16:3
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-8 9- 9	04/15/10 15:11	04/12/10 16:3
Methoxychlor	8081	ug/L	0.0018 U	_ 1	0.0018	0.0072	72-43-5	04/15/10 15:11	04/12/10 16:3
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 15:11	04/12/10 16:3
Toxaphene	8081	ug/L	0.044 U		0.044	0.2	8001-35-2	04/15/10 15:11	04/12/10 16:3
Total Organic Carbon			44440 ==					04/41/40 43:43	
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	13.9	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100026 CO-GW-MW-30D Matrix

Groundwater

Date Collected

4/6/2010 11:55

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	<u> 1ethod 8081</u>	•					•		
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 15:22	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	38	1		1	DEP-SURR-	04/15/10 15:22	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 15:22	04/12/10 16:30
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	04/15/10 15:22	04/12/10 16:30
b-BHC	8081	ug/L	0.13	1	0.003	0.012	319-85-7	04/15/10 15:22	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 15:22	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 15:22	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 15:22	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 15:22	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 15:22	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 15:22	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 15:22	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 15:22	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 15:22	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 15:22	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 15:22	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 15:22	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	. 1	0.0016	0.0064	53494-70-5	04/15/10 15:22	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76-44-8	04/15/10 15:22	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 15:22	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 15:22	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 15:22	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 15:22	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 15:22	04/12/10 16:30
Total Organic Carbon						•			
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	1.84	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100027

CO-GW-MW-41D

Matrix

Groundwater

Date Collected

4/6/2010 12:33

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	ethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 15:33	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	44	1		1	DEP-SURR-	04/15/10 15:33	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 15:33	04/12/10 16:30
a-BHC	8081	ug/L	0.0061 I	1	0.0023	0.0092	319-84-6	04/15/10 15:33	04/12/10 16:30
b-BHC	8081	ug/L	0.013	1.	0.003	0.012	319-85-7	04/15/10 15:33	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 15:33	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 15:33	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 15:33	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 15:33	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 15:33	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 15:33	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 15:33	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 15:33	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 15:33	04/12/10 16:30
Endosulfan sulfate	8081	. ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 15:33	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 15:33	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 15:33	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53 494- 70-5	04/15/10 15:33	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76-44-8	04/15/10 15:33	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 15:33	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 15:33	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 15:33	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 15:33	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 15:33	04/12/10 16:30

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100028 CO-GW-MW-44S Matrix

Groundwater

Date Collected

4/6/2010 13:43

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 15:43	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	41	1		1	DEP-SURR-	04/15/10 15:43	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 15:43	04/12/10 16:30
a-BHC	8081	ug/L	0.18	1	0.0023	0.0092	319-84-6	04/15/10 15:43	04/12/10 16:30
b-BHC	8081	ug/L	0.29	1	0.003	0.012	319-85-7	04/15/10 15:43	04/12/10 16:30
d-BHC	8081	ug/L	0.21	1	0.0023	0.0092	319-86-8	04/15/10 15:43	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 15:43	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 15:43	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-5 4- 8	04/15/10 15:43	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 15:43	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 15:43	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 15:43	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 15:43	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 15:43	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	11	0.0027	0.011	1031-07-8	04/15/10 15:43	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 15:43	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	_ 1	0.0019	0.0076	7421-93-4	04/15/10 15:43	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 15:43	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44- 8	04/15/10 15:43	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 15:43	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 15:43	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 15:43	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 15:43	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 15:43	04/12/10 16:30
Total Organic Carbon									
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	5.82	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100029

CO-GW-MW-44D

Matrix

Groundwater

Date Collected Date Received 4/6/2010 14:21

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 15:54	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	42	1		1	DEP-SURR-	04/15/10 15:54	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 15:54	04/12/10 16:30
a-BHC	8081	ug/L	0.0067 I	1	0.0023	0.0092	319-84-6	04/15/10 15:54	04/12/10 16:30
b-BHC	8081	ug/L	0.26	1	0.003	0.012	319-85-7	04/15/10 15:54	04/12/10 16:30
d-BHC	8081	ug/L	0.047	1	0.0023	0.0092	319-86-8	04/15/10 15:54	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 15:54	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 15:54	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 15:54	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 15:54	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 15:54	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 15:54	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 15:54	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 15:54	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 15:54	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 15:54	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	_ 1	0.0019	0.0076	7421-93-4	04/15/10 15:54	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 15:54	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44- 8	04/15/10 15:54	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 15:54	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1 _	0.0024	0.0096	58-89-9	04/15/10 15:54	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 15:54	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 15:54	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 15:54	04/12/10 16:30
Total Organic Carbon									•
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	2.86	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

Project Number 100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100030 CO-GW-MW-45S Matrix

Groundwater

Date Collected

4/6/2010 14:49

Date Received 4/8/2010 08:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081		•				•		
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 16:05	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	44	1		1	DEP-SURR-	04/15/10 16:05	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 16:05	04/12/10 16:30
a-BHC	8081	ug/L	0.081	1	0.0023	0.0092	319-84-6	04/15/10 16:05	04/12/10 16:30
b-BHC	8081	ug/L	1.6	10	0.03	0.12	319-85-7	04/18/10 14:28	04/12/10 16:30
d-BHC	8081	ug/L	0.027	1	0.0023	0.0092	319-86-8	04/15/10 16:05	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 16:05	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 16:05	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 16:05	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 16:05	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 16:05	04/12/10 16:30
Dieldrin	8081	ug/L	0.016	1	0.0014	0.0056	60-57-1	04/15/10 16:05	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 16:05	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 16:05	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	11	0.0027	0.011	1031-07-8	04/15/10 16:05	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 16:05	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	_1	0.0019	0.0076	7421-93-4	04/15/10 16:05	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 16:05	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44- 8	04/15/10 16:05	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 16:05	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 16:05	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 16:05	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 16:05	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 16:05	04/12/10 16:30
Total Organic Carbon									
Date Analyzed			4/11/10 S7	. 1			•	04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	10.4	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100031

CO-GW-MW-45D

Matrix

Groundwater

Date Collected

4/6/2010 15:23

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA N	1ethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 16:48	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	38	1		1	DEP-SURR-	04/15/10 16:48	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 16:48	04/12/10 16:30
a-BHC	8081	ug/L	0.0031 I	1	0.0023	0.0092	319-84-6	04/15/10 16:48	04/12/10 16:30
b-BHC	8081	ug/L	0.031	11	0.003	0.012	319-85-7	04/15/10 16:48	04/12/10 16:30
d-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-86-8	04/15/10 16:48	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019_U	1	0.0019	0.0076	5103-71-9	04/15/10 16:48	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 16:48	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/15/10 16:48	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 16:48	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 16:48	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 16:48	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 16:48	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 16:48	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 16:48	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 16:48	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 16:48	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 16:48	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/15/10 16:48	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 16:48	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 16:48	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 16:48	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 16:48	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 16:48	04/12/10 16:30
Total Organic Carbon	•								
Date Analyzed			4/11/10 S7	1				04/11/10 13:47	
Total Organic Carbon	SM5310B	mg/L	3.84	1	0.27	1.1		04/11/10 13:47	

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100032

CO-GW-MW-16S

Matrix

Groundwater

Date Collected

4/7/2010 13:53

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081							•	
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 16:58	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	61	1		1	DEP-SURR-	04/15/10 16:58	04/12/10 16:30
Aldrin	8081	ug/L	0.002 ป	1	0.002	0.008	309-00-2	04/15/10 16:58	04/12/10 16:30
a-BHC	8081	ug/L	0.019	1	0.0023	0.0092	319-84-6	04/15/10 16:58	04/12/10 16:30
b-BHC	8081	ug/L	0.20	1	0.003	0.012	319-85-7	04/15/10 16:58	04/12/10 16:30
d-BHC	8081	ug/L	0.032	1	0.0023	0.0092	319-86-8	04/15/10 16:58	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	11	0.0019	0.0076	5103-71-9	04/15/10 16:58	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-7 4 -2	04/15/10 16:58	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	· 1	0.0016	0.0064	72-54-8	04/15/10 16:58	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 16:58	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 16:58	04/12/10 16:30
Dieldrin	8081	ug/L	0.043	1	0.0014	0.0056	60-57-1	04/15/10 16:58	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 16:58	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 16:58	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 16:58	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 16:58	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	,0.0076	7421-93-4	04/15/10 16:58	04/12/10 16:30
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53 494- 70-5	04/15/10 16:58	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1		0.0096	76-44-8	04/15/10 16:58	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 16:58	04/12/10 16:30
Lindane	8081	ug/L_	0.0024 U	1		0.0096		04/15/10 16:58	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72 -4 3-5	04/15/10 16:58	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 16:58	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 16:58	04/12/10 16:30

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100033

CO-GW-MW-16D

Matrix

Groundwater

Date Collected

4/7/2010 14:14

Date Received 4/8/2010 08:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1				04/15/10 17:09	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	73	1		1	DEP-SURR-	04/15/10 17:09	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/15/10 17:09	04/12/10 16:30
a-BHC	8081	ug/L	2.4	10	0.023	0.092	31 9-84-6	04/18/10 14:53	04/12/10 16:30
b-BHC	8081	ug/L	11	10	0.003	0.012	319-85-7	04/18/10 14:53	04/12/10 16:30
d-BHC	8081	ug/L_	2.1	10	0.023	0.092	319-86-8	04/18/10 14:53	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 17:09	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 17:09	04/12/10 16:30
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-5 4- 8	04/15/10 17:09	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 .17:09	04/12/10 16:30
4,4'-DDT	-8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 17:09	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 17:09	04/12/10 16:30
Endosulfan 1	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/15/10 17:09	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213 -6 5-9	04/15/10 17:09	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 17:09	04/12/10 16:30
Endrin	8081	ug/L	. 0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 17:09	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 17:09	04/12/10 16:30
Endrin ketone	8081	ug/L	. 0.0016 U	1	0.0016	0.0064	53494-70-5	04/15/10 17:09	04/12/10 16:30
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/15/10 17:09	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	11	0.0022	0.0088	1024-57-3	04/15/10 17:09	04/12/10 16:30
Lindane	8081	ug/L	0.64	1	0.0024	0.0096	58-89-9	04/15/10 17:09	04/12/10 16:30
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/15/10 17:09	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 17:09	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 17:09	04/12/10 16:30

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100034

CO-GW-MW-36S

Matrix

Groundwater

Date Collected

4/7/2010 15:01

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		04/12/10						04/12/10 16:30
Date Analyzed			4/15/10	1		2		04/15/10 17:20	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	107	1		1	DEP-SURR-	04/15/10 17:20	04/12/10 16:30
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	30 9- 00-2	04/15/10 17:20	04/12/10 16:30
a-BHC	8081	ug/L	0.33	1	0.0023	0.0092	319-84-6	04/15/10 17:20	04/12/10 16:30
b-BHC	8081	ug/L	0.79	1	0.003	0.012	319-85-7	04/15/10 17:20	04/12/10 16:30
d-BHC	8081	ug/L	0.79	1	0.0023	0.0092	319-86-8	04/15/10 17:20	04/12/10 16:30
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/15/10 17:20	04/12/10 16:30
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/15/10 17:20	04/12/10 16:30
4,4'-DDD	8081	ug/L	2.0	10	0.016	0.064	72-54-8	04/18/10 15:17	04/12/10 16:30
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/15/10 17:20	04/12/10 16:30
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/15/10 17:20	04/12/10 16:30
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/15/10 17:20	04/12/10 16:30
Endosulfan I	8081	ug/L	0.0019 U	11	0.0019	0.0076	959-98-8	04/15/10 17:20	04/12/10 16:30
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/15/10 17:20	04/12/10 16:30
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/15/10 17:20	04/12/10 16:30
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/15/10 17:20	04/12/10 16:30
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/15/10 17:20	04/12/10 16:30
Endrin ketone	`8081	ug/L .	0.0016 U	1	0.0016	0.0064	53 494 -70-5	04/15/10 17:20	04/12/10 16:30
Heptachior	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/15/10 17:20	04/12/10 16:30
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/15/10 17:20	04/12/10 16:30
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/15/10 17:20	04/12/10 16:30
Methoxychlor	8081	υg/L	0.0018 U	1	0.0018	0.0072	72 -4 3-5	04/15/10 17:20	04/12/10 16:30
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/15/10 17:20	04/12/10 16:30
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/15/10 17:20	04/12/10 16:30

SunLabs Project Number TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100079 CO-GW-MW-1D Matrix

Groundwater

Date Collected

4/8/2010 09:07

Date Received 4/9/201

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	ethod 8081								
Date Extracted	3510c		04/14/10						04/14/10 12:15
Date Analyzed			4/18/10	1				04/18/10 19:20	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%%	63	1		1	DEP-SURR-	04/18/10 19:20	04/14/10 12:15
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/18/10 19:20	04/14/10 12:15
a-BHC	8081	ug/L	1.9	20	0.046	0.18	319-84-6	04/23/10 14:41	04/14/10 12:15
b-BHC	8081	ug/L	1.6	20	0.003	0.012	319-85-7	04/23/10 14:41	04/14/10 12:15
d-BHC	8081	ug/L	5.2	20_	0.046	0.18	319-86-8	04/23/10 14:41	04/14/10 12:15
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/18/10 19:20	04/14/10 12:15
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/18/10 19:20	04/14/10 12:15
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/18/10 19:20	04/14/10 12:15
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/18/10 19:20	04/14/10 12:15
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/18/10 19:20	04/14/10 12:15
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/18/10 19:20	04/14/10 12:15
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/18/10 19:20	04/14/10 12:15
Endosulfan II	8081	ug/L	0.51	20	0.0018	0.0072	33213-65-9	04/23/10 14:41	04/14/10 12:15
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/18/10 19:20	04/14/10 12:15
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/18/10 19:20	04/14/10 12:15
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/18/10 19:20	04/14/10 12:1
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/18/10 19:20	04/14/10 12:19
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	7 6 44 -8	04/18/10 19:20	04/14/10 12:1
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/18/10 19:20	04/14/10 12:15
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/18/10 19:20	04/14/10 12:1
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/18/10 19:20	04/14/10 12:19
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/18/10 19:20	04/14/10 12:1
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/18/10 19:20	04/14/10 12:19

SunLabs **Project Number**

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100080

CO-GW-MW-101D

Matrix

Groundwater

Date Collected

4/8/2010 09:07

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081						•		
Date Extracted	3510c		04/14/10						04/14/10 12:15
Date Analyzed			4/18/10	1				04/18/10 19:45	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	61	1		1	DEP-SURR-	04/18/10 19:45	04/14/10 12:15
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/18/10 19:45	04/14/10 12:15
a-BHC	8081	ug/L	1.7	1	0.0023	0.0092	319-84-6	04/23/10 14:52	04/14/10 12:15
b-BHC '	8081	ug/L	1.5	1	0.003	0.012	319-85-7	04/23/10 14:52	04/14/10 12:19
d-BHC	8081	ug/L	4.8	1	0.0023	0.0092	319-86-8	04/23/10 14:52	04/14/10 12:19
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/18/10 19:45	04/14/10 12:15
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/18/10 19:45	04/14/10 12:15
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/18/10 19:45	04/14/10 12:15
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/18/10 19:45	04/14/10 12:15
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-2 9- 3	04/18/10 19:45	04/14/10 12:19
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/18/10 19:45	04/14/10 12:15
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/18/10 19:45	04/14/10 12:15
Endosulfan II	8081	ug/L	0.46	1	0.0018	0.0072	33213-65-9	04/23/10 14:52	04/14/10 12:1
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/18/10 19:45	04/14/10 12:1!
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/18/10 19:45	04/14/10 12:19
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/18/10 19:45	04/14/10 12:1
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/18/10 19:45	04/14/10 12:1
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44- 8	04/18/10 19:45	04/14/10 12:1!
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/18/10 19:45	04/14/10 12:1
Lindane	8081	ug/L	0.0024 U	1	0.0024	0.0096	58-89-9	04/18/10 19:45	04/14/10 12:1
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/18/10 19:45	04/14/10 12:1
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/18/10 19:45	04/14/10 12:1
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/18/10 19:45	04/14/10 12:1

SunLabs Project Number TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100081

CO-GW-MW-36D

Matrix

Groundwater

Date Collected

4/8/2010 09:41

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081	•							
Date Extracted	3510c		04/14/10						04/14/10 12:15
Date Analyzed			4/18/10	1				04/18/10 20:09	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	49	1 .		1	DEP-SURR-	04/18/10 20:09	04/14/10 12:15
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	30 9 -00-2	04/18/10 20:09	04/14/10 12:15
a-BHC	8081	ug/L	1.2	20	0.0023	0.0092	319-84-6	04/23/10 15:03	04/14/10 12:15
b-BHC	8081	ug/L	1.6	20	0.003	0.012	319-85-7	04/23/10 15:03	04/14/10 12:15
d-BHC	8081	ug/L	4.0	20	0.0023	0.0092	319-86-8	04/23/10 15:03	04/14/10 12:15
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/18/10 20:09	04/14/10 12:15
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/18/10 20:09	04/14/10 12:15
4,4'-DDD	8081	ug/L	0.17	20	0.0016	0.0064	72-54-8	04/23/10 15:03	04/14/10 12:15
4,4'-DDE	-8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/18/10 20:09	04/14/10 12:15
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/18/10 20:09	04/14/10 12:15
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/18/10 20:09	04/14/10 12:15
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/18/10 20:09	04/14/10 12:15
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/18/10 20:09	04/14/10 12:15
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/18/10 20:09	04/14/10 12:15
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/18/10 20:09	04/14/10 12:15
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/18/10 20:09	04/14/10 12:15
Endrin ketone	8081	ug/L	0.0016 U	11	0.0016	0.0064	53494-70-5	04/18/10 20:09	04/14/10 12:15
Heptachlor	8081	ug/L	.0.0024 U	1	0.0024	0.0096	7 6-44- 8	04/18/10 20:09	04/14/10 12:15
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/18/10 20:09	04/14/10 12:15
Lindane	8081	ug/L	0.55	20	0.0024	0.0096	58-8 9 -9	04/23/10 15:03	04/14/10 12:15
Methoxychlor	8081	ug/L	0.0018 U	11	0.0018	0.0072	72-43-5	04/18/10 20:09	04/14/10 12:15
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/18/10 20:09	04/14/10 12:15
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/18/10 20:09	04/14/10 12:15

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100082 CO-GW-MW-50S Matrix

Groundwater

Date Collected

4/8/2010 12:02

Date Received 4/9/2010 10:00

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c	•	04/14/10						04/14/10 12:15
Date Analyzed			4/18/10	1				04/18/10 20:33	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	91	1		1	DEP-SURR-	04/18/10 20:33	04/14/10 12:15
Aldrin	8081	ug/L	0.002 U	1 .	0.002	0.008	309-00-2	04/18/10 20:33	04/14/10 12:15
a-BHC	8081	ug/L	7.0	50	0.12	0.46	319-84-6	04/23/10 15:13	04/14/10 12:15
b-BHC	8081	ug/L	3.8	50	0.15	0.6	319-85-7	04/23/10 15:13	04/14/10 12:15
d-BHC	8081	ug/L	48	50	0.12	0.46	319-86-8	04/23/10 15:13	04/14/10 12:15
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/18/10 20:33	04/14/10 12:15
q-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/18/10 20:33	04/14/10 12:15
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/18/10 20:33	04/14/10 12:15
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/18/10 20:33	04/14/10 12:15
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/18/10 20:33	04/14/10 12:15
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/18/10 20:33	04/14/10 12:15
Endosulfan I	8081	ug/L	0.0019 U	1	0.0019	0.0076	959-98-8	04/18/10 20:33	04/14/10 12:15
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/18/10 20:33	04/14/10 12:15
Endosulfan sulfate	8081	ug/L	0.0027 U	1	0.0027	0.011	1031-07-8	04/18/10 20:33	04/14/10 12:15
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/18/10 20:33	04/14/10 12:15
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/18/10 20:33	04/14/10 12:15
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/18/10 20:33	04/14/10 12:15
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44- 8	04/18/10 20:33	04/14/10 12:15
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/18/10 20:33	04/14/10 12:15
Lindane	8081	ug/L	11	50	0.12	0.48	58-8 9 -9	04/23/10 15:13	04/14/10 12:15
Methoxychlor	8081	uq/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/18/10 20:33	04/14/10 12:15
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/18/10 20:33	04/14/10 12:15
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/18/10 20:33	04/14/10 12:15
Total Organic Carbon	•								
Date Analyzed		•	4/19/10 S7	1				04/19/10 17:18	
Total Organic Carbon	SM5310B	mg/L	24.4	1	0.27	1.1		04/19/10 17:18	

SunLabs Project Number

TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100083

CO-GW-MW-50D

Matrix

Groundwater

Date Collected
Date Received

4/8/2010 12:49

he

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA I	Method 8081								
Date Extracted	3510c		04/14/10						04/14/10 12:15
Date Analyzed			4/18/10	1				04/18/10 20:58	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	37	1		1	DEP-SURR-	04/18/10 20:58	04/14/10 12:15
Aldrin	8081	ug/L	0.002 U	1	0.002	0.008	309-00-2	04/18/10 20:58	04/14/10 12:19
a-BHC	8081	ug/L	4.2	50	0.12	0.46	319-84-6	04/23/10 15:24	04/14/10 12:15
b-BHC	8081	ug/L	3.2	50	0.15	0.6	319-85-7	04/23/10 15:24	04/14/10 12:15
d-BHC	8081	ug/L	5.4	50	0.12	0.46	319-86-8	04/23/10 15:24	04/14/10 12:15
a-Chlordane	8081	ug/L	0.0019 U	1	0.0019	0.0076	5103-71-9	04/18/10 20:58	04/14/10 12:15
g-Chlordane	8081	ug/L	0.0021 U	1	0.0021	0.0084	5103-74-2	04/18/10 20:58	04/14/10 12:15
4,4'-DDD	8081	ug/L	2.7	50	0.0016	0.0064	72-54-8	04/23/10 15:24	04/14/10 12:15
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/18/10 20:58	04/14/10 12:15
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/18/10 20:58	04/14/10 12:15
Dieldrin	8081	ug/L	0.0014 U	1	0.0014	0.0056	60-57-1	04/18/10 20:58	04/14/10 12:15
Endosulfan I	8081	_ug/L_	0.0019 U	1	0.0019	0.0076	959-98-8	04/18/10 20:58	04/14/10 12:15
Endosulfan II	8081	ug/L	0.0018 U	1	0.0018	0.0072	33213-65-9	04/18/10 20:58	04/14/10 12:1
Endosulfan sulfate	8081	ug/L	0.0027_U	1	0.0027	0.011	1031-07-8	04/18/10 20:58	04/14/10 12:1
Endrin	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-20-8	04/18/10 20:58	04/14/10 12:1
Endrin aldehyde	8081	ug/L	0.0019 U	1	0.0019	0.0076	7421-93-4	04/18/10 20:58	04/14/10 12:1
Endrin ketone	8081	ug/L	0.0016 U	1	0.0016	0.0064	53494-70-5	04/18/10 20:58	04/14/10 12:1
Heptachlor	8081	ug/L	0.0024 U	1	0.0024	0.0096	76 -44- 8	04/18/10 20:58	04/14/10 12:1
Heptachlor epoxide	8081	ug/L	0.0022 U	1	0.0022	0.0088	1024-57-3	04/18/10 20:58	04/14/10 12:1
Lindane	8081	ug/L	0.12 U	50	0.12	0.48	58-89-9	04/23/10 15:24	04/14/10 12:1
Methoxychlor	8081	ug/L	0.0018 U	1	0.0018	0.0072	72-43-5	04/18/10 20:58	04/14/10 12:1
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/18/10 20:58	04/14/10 12:1
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/18/10 20:58	04/14/10 12:1
Total Organic Carbon									
Date Analyzed			4/19/10 S7	1				04/19/10 17:18	
Total Organic Carbon	SM5310B	mg/L	57	1	0.27	1.1		04/19/10 17:18	

SunLabs **Project Number**

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100084 CO-GW-EQBK-1

Matrix

Water

Date Collected

Date Received

4/8/2010 13:00 4/9/2010 10:00

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Organochlorine Pesticides by EPA M	lethod 8081								
Date Extracted	3510c		04/14/10						04/14/10 12:15
Date Analyzed			4/23/10	1				04/23/10 15:35	
2,4,5,6-Tetrachloro-m-xylene (10-139)	8081	%	60	1		1	DEP-SURR-	04/23/10 15:35	04/14/10 12:15
Aldrin	8081	ug/L	0.002 U	11	0.002	0.008	309-00-2	04/23/10 15:35	04/14/10 12:15
a-BHC	8081	ug/L	0.0023 U	1	0.0023	0.0092	319-84-6	04/23/10 15:35	04/14/10 12:15
b-BHC	8081	ug/L	0.013	1	0.003	0.012	319-85-7	04/23/10 15:35	04/14/10 12:15
d-BHC	8081	ug/L	0.025	1	0.0023	0.0092	319-86-8	04/23/10 15:35	04/14/10 12:15
a-Chlordane	8081	ug/L	0.0019 U	1		0.0076	5103-71-9	04/23/10 15:35	04/14/10 12:15
g-Chlordane	8081	ug/L	0.0021 U	1		0.0084	5103-74-2	04/23/10 15:35	04/14/10 12:15
4,4'-DDD	8081	ug/L	0.0016 U	1	0.0016	0.0064	72-54-8	04/23/10 15:35	04/14/10 12:15
4,4'-DDE	8081	ug/L	0.0017 U	1	0.0017	0.0068	72-55-9	04/23/10 15:35	04/14/10 12:15
4,4'-DDT	8081	ug/L	0.002 U	1	0.002	0.008	50-29-3	04/23/10 15:35	04/14/10 12:15
Dieldrin	8081	ug/L	0.0014 U	1		0.0056	60-57-1	04/23/10 15:35	04/14/10 12:15
Endosulfan I	8081	ug/L	0.0019 U	1			95 9 -98-8	04/23/10 15:35	04/14/10 12:15
Endosulfan II	8081	ug/L	0.0018 U	1			33213-65-9	04/23/10 15:35	04/14/10 12:15
Endosulfan sulfate	8081	ug/L	0.0027 U	1			1031-07-8	04/23/10 15:35	04/14/10 12:15
Endrin	8081	ug/L	0.0018 U	1		0.0072	72-20-8	04/23/10 15:35	04/14/10 12:15
Endrin aldehyde	8081	ug/L	0.0019 U	1		0.0076		04/23/10 15:35	04/14/10 12:15
Endrin ketone	8081	ug/L	0.0016 U	1		0.0064	53 494 -70-5	04/23/10 15:35	04/14/10 12:15
Heptachlor	8081	ug/L	0.0024 U	1		0.0096		04/23/10 15:35	04/14/10 12:15
Heptachlor epoxide	8081	ug/L	0.0022 U	1			1024-57-3	04/23/10 15:35	04/14/10 12:15
Lindane	8081	ug/L	0.0024 U	1		0.0096	58-89-9	04/23/10 15:35	04/14/10 12:15
Methoxychlor	8081	ug/L	0.0018 U	1				04/23/10 15:35	04/14/10 12:15
Mirex	8081	ug/L	0.015 U	1	0.015	0.06	2385-85-5	04/23/10 15:35	04/14/10 12:15
Toxaphene	8081	ug/L	0.044 U	1	0.044	0.2	8001-35-2	04/23/10 15:35	04/14/10 12:15

SunLabs Project Number

100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number Sample Designation

100085

CO-SO-COMP-1

Matrix

Soil

Date Collected
Date Received

4/8/2010 11:00

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Extraction	.=		044240				•		04140140
Date Leached - TCLP	1311		04/12/10	1				04/12/10	04/12/10

SunLabs

Project Number 100408.07

TASK Environmental, Inc.

Project Description

Chevron Orlando

April 26, 2010

SunLabs Sample Number

100086

Matrix

TCLP Leachate

Sample Designation

TCLP Leachate/100085 (CO-SO-COMP-1)

Date Collected

Date Received

Parameters	Method	Units	Results	DII	MDL RL	CAS	Date/Time Analyzed	Date/Time
				Facto	or	Number		Prep
TCLP-Pesticides by Method	<u>8081</u>							
Date Extracted	3510		04/14/10					04/14/10 15:30
Date Analyzed	8081		4/19/10	1			04/19/10 00:12	
Surrogate	8081	%	54	1			04/19/10 00:12	04/14/10 15:30
Chlordane	8081	mg/L	0.11	10	0.0001 0.03	57-74-9	04/23/10 18:55	04/14/10 15:30
Endrin	8081	mg/L	0.00009 U	1	0.00009 0.02	72-20-8	04/19/10 00:12	04/14/10 15:30
Heptachlor	8081	mg/L	0.00012 U	1	0.00012 0.008	76-44-8	04/19/10 00:12	04/14/10 15:30
Heptachlor epoxide	8081	mg/L	0.00011 U	1	0.00011 0.008	1024-57-3	04/19/10 00:12	04/14/10 15:30
Lindane	8081	mg/L	0.00012 U	1	0.00012 0.4	58-89-9	04/19/10 00:12	04/14/10 15:30
Methoxychlor	8081	mg/L	0.00009 U	1	0.00009 0.1	72-43-5	04/19/10 00:12	04/14/10 15:30
Toxaphene	8081	mg/L	0.002 U	1	0.002 0.03	8001-35-2	04/19/10 00:12	04/14/10 15:30

SunLabs Project Number

TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

	Footnotes
*	SunLabs is not currently NELAC certified for this analyte.
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.
J	The reported value failed to meet the established quality control criteria for either precision or accuracy(see cover letter for explanation)
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
MB	Method Blank
MS	Matrix Spike
M\$D	Matrix Spike Duplicate
NA	Sample not analyzed at client's request.
Q	Sample held beyond the accepted holding time.
RL	RL(reporting limit) = PQL(practical quantitation limit).
RPD	Relative Percent Difference
<i>57</i>	This analysis performed by Benchmark EnviroAnalytical, Inc., Certification number E84167.
U	Compound was analyzed for but not detected.
V	Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

Project Number

TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

Batch No:	D3834							,,		Samples						
est: estCode:	Organochlorine Pesticides by EPA Method 8081									100017, 100018, 100019, 100020, 100021, 100022, 100023, 100024, 100025, 100026, 100027, 100028, 100029, 100030, 100031, 100032, 100033, 100034						
ompound	0001 -W	Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC Limits RPD LCS	MS Spike	MS	MSD	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers	
arent Sample Number			i -					<u> </u>	99932	99932					:	
4,5,6-Tetrachloro-m-	xylene (10-139)	50 %						L								
ldrin		0.002 U_ ug/L	100	59			38-93	100		61	. 2	163		·		
BHC		0.0023 U ug/L	100	38			21-112	100	45	47	4	14	0-165		·	
-BHC		_0.0030 U_ ug/L	100	55			41-103	_100	66	62	6	17	0-159			
BHC		0.0023 U ug/L					42 400	400				450	0.120		 	
Chlordane Chlordane		0.0019 U ug/L	100 100	. 58 . 73			43-108 51-117	100	61 91	58 78	5 15	156 16	9-130 2-143		ļ	
-Chlordane 4'-DDD		0.0021 U ug/L 0.0016 U ug/L		73			31-117			'.0_	!٧		2- 140		i	
4'-DDE		0.0017 U ug/L	 -												·	
,4'-DDT		0.002 U ug/L	100	68			44-118	100	82	78	5	21	7-161			
ieldrin	:	0.0014 U ug/L	100	65			51-101	100	77	79	3	22	30-137		:	
ndosulfan I	i	0.0019 U ug/L	100	62			50-93	100	70	71	1	27	10-137		:	
ndosulfan II		0.0018 U ug/L						<u> </u>							:	
ndosulfan sulfate		0.0027 U ug/L	100	39			21-130	100	67	64	5	76	15-125		:	
ndrin		0.0018 U ug/L	100	64			48-130	100	76	70	8	41	33-157		ļ	
ndrin aldehyde	, '	0.0019 U ug/L	100	71			37-127	100	8 5	85	0	73	5-141			
ndrin ketone		0.0016 U ug/L						ļ <u></u>								
leptachlor		0.0024 U ug/L	100_	55			28-131	100	62	60_	3	157	0-172		<u> </u>	
leptachlor epoxide		0.0022 U_ug/L	100	63			51-100	100	71	68	4	27	17-131		·	
indane lethoxychlor		0.0024 U ug/L	400				34-153	100	444	112	4		61-148	:		
	;	0.0018 U ug/L	100	69				·	111		!	64				
irex oxaphene	D3847	0.015 U ug/L 0.044 U uq/L	100	59			39-87	100 A	75 ssociated	73 Sample	3 s	53				
oxaphene Batch No: Test:		0.015 U ug/L	100					100 A	75	73						
direx oxaphene Batch No: Fest: estCode:	TCLP-Pesti	0.015 U ug/L 0.044 U uq/L	100		LCSD %Rec	RPD %		100 A	75 ssociated	73 Sample		53		Dup	Qualifiers	
oxaphene Batch No: Test: estCode: compound	TCLP-Pesti	0.015 U ug/. 0.044 U ug/.	8081	LCS			39-87	100 A	75 ssociated	73 Sample	s RPD	QC	47-109		Qualifiers	
direx Oxaphene Batch No: Fest: FestCode: Compound Farent Sample Number	TCLP-Pesti	0.015 U ug/. 0.044 U ug/.	8081	LCS			39-87	100 A	75 ssociatec 00086 MS %Rec	73 Sample	s RPD	QC	47-109		Qualifiers	
oxaphene Batch No: Fest: estCode: compound arent Sample Number urrogate	TCLP-Pesti	0.015 U ug/L 0.044 U ug/L icides by Method	8081 LCS Spike	LCS			QC LimitsRPD LCS	A 11	75 ssociated 00086 MS %Rec	73 Sample	s RPD	QC	47-109 Limits— MS		Qualifiers	
oxaphene Batch No: est: estCode: ompound arent Sample Number urrogate hiordane ndrin	TCLP-Pesti	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61 % 0.0001 U mg/L 0.00009 U mg/L	8081 LCS Spike	LCS %Rec			QC Limits RPD LCS	100	75 ssociatec 00086 MS %Rec 100086	73 Sample	s RPD	QC	47-109 Limits		Qualifiers	
direx oxaphene Batch No: Fest: estCode: compound arent Sample Number urrogate chlordane ndrin eptachlor	TCLP-Pesti	0.015 U ug/L 0.044 U ug/L cides by Method Blank 61 % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L	8081 LCS Spike	LCS %Rec			QC Limits RPD LCS 46-130 33-127	100 A 11 MS Spike 200 200	75 ssociated 00086 MS %Rec 100086	73 Sample	s RPD	QC	47-109 Limits— MS		Qualifiers	
Airex Oxaphene Batch No: Fest: estCode: compound Varent Sample Number surrogate chlordane eindrin leptachlor epoxide	TCLP-Pesti	0.015 U ug/L 0.044 U uq/L cides by Method Blank 61 % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L	8081 LCS Spike 200 200 200 200	59 LCS %Rec			QC Limits RPD LCS 46-130 33-127 60-140	100 A 11 MS Spike 200 200	75 ssociated 00086 MS WRec 100086 139 137 123	73 Sample	s RPD	QC	47-109 Limits— MS 0-172 0-160		Qualifiers	
direx oxaphene Batch No: Fest: estCode: compound aren/ Sample Number urrogate intordane indin eeptachlor eeptachlor epoxide indane	TCLP-Pesti	0.015 U ug/L 0.044 U uq/L cides by Method Blank 61. % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00011 U mg/L	100 8081 LCS Spike 200 200 200 200 200	59 LCS %Rec			QC Limits RPD LCS 46-130 33-127 60-140 42-124	100 MS Spike 200 200 200	75 ssociated 00086 MS %Rec 100086 139 137 123 89	73 Sample	s RPD	QC	47-109 Limits		Qualifiers	
irex oxaphene Batch No: est: estCode: ompound aren/ Sample Number urrogate hlordane pdrin eptachlor eptachlor epoxide indane lethoxychlor	TCLP-Pesti	0.015 U ug/L 0.044 U uq/L cides by Method Blank 61. % 0.0001 U mg/L 0.0009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00009 U mg/L	8081 LCS Spike 200 200 200 200	59 LCS %Rec			QC Limits RPD LCS 46-130 33-127 60-140	100 MS Spike 200 200 200	75 ssociated 00086 MS WRec 100086 139 137 123	73 Sample	s RPD	QC	47-109 Limits— MS 0-172 0-160		Qualifiers	
irex oxaphene Batch No: est: estCode: ompound arent Sample Number urrogate hilordane eptachlor eptachlor epoxide ndane ethoxychlor oxaphene	TCLP-Pesti	0.015 U ug/L 0.044 U uq/L cides by Method Blank 61. % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00011 U mg/L	100 8081 LCS Spike 200 200 200 200 200	59 LCS %Rec			QC Limits RPD LCS 46-130 33-127 60-140 42-124	100 MS Spike 200 200 200	75 ssociated 00086 MS %Rec 100086 139 137 123 89	73 Sample	s RPD	QC	47-109 Limits— MS 0-172 0-160		Qualifiers	
inex oxaphene Batch No: est: estCode: ompound arent Sample Number urrogate hlordane eptachlor eptachlor epoxide indane lethoxychlor oxaphene Batch No:	TCLP-Pesti TCLP-Pest	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61. % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L	100 8081 LCS Spike 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec		QC Limits RPD LCS 46-130 33-127 60-140 42-124	100 A 11 MS Spike 200 200 200 200 200 A	75 ssociatec 00086 MS %Rec 100086 139 137 123 89 110 ssociatec	73 Sample MSD %Rec	RPD %	QC RPD	47-109 Limits	RPD	Qualifiers	
inex oxaphene Batch No: est: estCode: ompound arent Sample Number urrogate hlordane eptachlor eptachlor epoxide indane lethoxychlor oxaphene Batch No:	TCLP-Pesti TCLP-Pest	0.015 U ug/L 0.044 U uq/L cides by Method Blank 61. % 0.0001 U mg/L 0.0009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00009 U mg/L	100 8081 LCS Spike 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec		QC Limits RPD LCS 46-130 33-127 60-140 42-124	100 A 11 MS Spike 200 200 200 200 200 A	75 ssociatec 00086 MS %Rec 100086 139 137 123 89 110 ssociatec	73 Sample MSD %Rec	RPD %	QC RPD	47-109 Limits— MS 0-172 0-160	RPD	Qualifiers	
Satch No: est: estCode: ompound arent Sample Number urrogate hilordane ndrin eptachlor epoxide indane lethoxychlor oxaphene Batch No: est:	TCLP-Pesti TCLP-Pest D3848	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61. % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L	100 8081 LCS Spike 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec		QC Limits RPD LCS 46-130 33-127 60-140 42-124	100 A 11 MS Spike 200 200 200 200 200 A	75 ssociatec 00086 MS %Rec 100086 139 137 123 89 110 ssociatec	73 Sample MSD %Rec	RPD %	QC RPD	47-109 Limits	RPD	Qualifiers	
irex oxaphene Batch No: est: estCode: ompound arent Sample Number urrogate hilordane ndrin eptachlor eptachlor eptachlor oxaphene Batch No: est: estCode:	TCLP-Pest TCLP-Pest D3848 Organochio	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61. % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L	100 8081 LCS Spike 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec		QC Limits RPD LCS 46-130 33-127 60-140 42-124	100 A 11 MS Spike 200 200 200 200 200 A	75 ssociated 100086 MS %Rec 100086 139 137 123 89 110 MS Ssociated 100079, 10	73 Sample MSD %Rec	RPD %	QC RPD	47-109 Limits	RPD	Qualifiers	
Satch No: Fest: estCode: fompound arent Sample Number urrogate chlordane ndrin leptachlor epoxide indane Batch No: Fest: estCode: fest: estCode: fest: estCode: fompound	TCLP-Pest TCLP-Pest D3848 Organochio	0.015 U ug/L 0.044 U ug/L cicides by Method Blank 61 % 0.0001 U mg/L 0.00019 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L	100 8081 LCS Spike 200 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec	%	QC Limits RPD LCS 46-130 33-127 60-140 42-124 60-140	100 A 11 MS Spike 200 200 200 200 200 11	75 ssociated 100086 MS %Rec 100086 139 137 123 89 110 MS Ssociated 100079, 10	MSD %Rec	s (0081, 100	QC RPD	47-109 Limits— MS 0-172 0-160 19-139	RPD		
ilirex oxaphene Batch No: est: estCode: ompound arent Sample Number urrogate hlordane eptachlor eptachlor epoxide indane lethoxychlor oxaphene Batch No: est: estCode: ompound	TCLP-Pesti TCLP-Pest D3848 Organochio 8081-w	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61. % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L	100 8081 LCS Spike 200 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec	%	QC Limits RPD LCS 46-130 33-127 60-140 42-124 60-140	100 A 11 MS Spike 200 200 200 200 200 11	75 ssociated 100086 MS %Rec 100086 139 137 123 89 110 MS %Rec 100079, 10	MSD %Rec	s (0081, 100	QC RPD	47-109 Limits— MS 0-172 0-160 19-139	RPD		
Satch No: Test: estCode: compound arent Sample Number urrogate infordane indrin eeptachlor eeptachlor eeptachlor estchoxychlor oxaphene Batch No: Test: estCode: ompound arent Sample Number 4,5,6-Tetrachloro-m-	TCLP-Pesti TCLP-Pest D3848 Organochio 8081-w	0.015 U ug/L 0.044 U ug/L cicides by Method Blank 61 % 0.0001 U mg/L 0.00019 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L	100 8081 LCS Spike 200 200 200 200 200 200	59 LCS %Rec 97 73 79 83 93	%Rec	%	QC Limits RPD LCS 46-130 33-127 60-140 42-124 60-140	100 A 11 MS Spike 200 200 200 200 200 11	75 ssociated 100086 MS %Rec 100086 139 137 123 89 110 MS %Rec 100079, 10	MSD %Rec	s (0081, 100	QC RPD	47-109 Limits— MS 0-172 0-160 19-139	RPD		
direx oxaphene Batch No: Fest: estCode: compound Parent Sample Number durrogate chlordane endin eleptachlor	TCLP-Pesti TCLP-Pest D3848 Organochio 8081-w	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61 % 0.0001 U mg/L 0.00009 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00014 U mg/L 0.00015 U mg/L 0.00015 U mg/L 0.00015 U mg/L 0.00015 U mg/L 0.00015 U mg/L 0.00015 U mg/L 0.00015 U mg/L	100 8081 LCS Spike 200 200 200 200 200 LCS Spike	97 73 79 83 93	%Rec	% RPD %	QC Limits RPD LCS 46-130 33-127 60-140 42-124 60-140 QC Limits RPD LCS	100 MS Spike 200 200 200 200 300 200 200 Spike	75 SSSOCIATE (1000086) MS %Rec 1000066 139 1137 123 89 110 110 MS %Rec 1000079, 10	73 3 Sample: MSD %Rec 1 Sample: 00080, 10 MSD %Rec	s RPD %	QC RPD	Limits	RPD		
direx oxaphene Batch No: Fest: estCode: compound areni Sample Number surrogate chlordane nodrin leptachlor leptachlor estchoxychlor oxaphene Batch No: Fest: estCode: compound areni Sample Number didin	TCLP-Pesti TCLP-Pest D3848 Organochio 8081-w	0.015 U ug/L 0.044 U ug/L icides by Method Blank 61 % 0.0001 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00012 U mg/L 0.00010 U mg/L 0.00010 U mg/L 0.00010 U mg/L 0.00000 U mg/L 0.0000 U ug/L	100 8081 LCS Spike 200 200 200 200 200 200 200 100 200 20	97 73 79 83 93	%Rec 8081	% RPD %	QC Limits RPD LCS 46-130 33-127 60-140 42-124 60-140 QC Limits RPD LCS	100 MS Spike 200 200 200 200 A 11 MS Spike	75 SSSOCIATE OF TOOLS OF TOOL	73 Sample: MSD %Rec Sample: 1 Sample: 20080, 10 MSD %Rec 100081	s RPD %	QC RPD	LImits	RPD		

SunLabs, Inc.

5460 Beaumont Center Blvd., Suite 520

Tampa, FL 33634

Laboratory ID Number - E84809

Page QC-1 of 2

Phone: (813) 881-9401 Email: Info@SunLabsInc.com Website: www.SunLabsInc.com

Quality Control Data

Project Number

TASK Environmental, Inc.

100408.07

Project Description

Chevron Orlando

April 26, 2010

Batch No:	D3848											Sample					
Test:	Organochlo	rine Pest	icides b	y EPA I	Method	8081				;10	10079, 10)0080, 10	10081, 10	0082, 100	0083, 10008	4	
TestCode:	8081-w		<u>.</u>						<u> </u>	:							
Compound		Blar	nk	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC RPD	Limits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC RPD	Limits MS	Dup RPD	Qualifiers
Parent Sample Number				Ī							100081	100081					<u> </u>
a-Chlordane		0.0019 U	ug/L	100	68	73	7_	20	43-108	100	133*	0.	200 *	.156	9-130		
g-Chlordane		0.0021 U	_ ug/L	100	75	68	10	1,8	51-117	100	0*	0.*	NA .	16	2-143		:
4,4'-DDD		0.0016 U	_ug/L	<u>.i</u>				· · · — ——		<u> </u>							
4,4'-DDE		0.0017 U	υg/L							:							
4,4'-DDT		0.002 U	ug/L	100	64	63	2	18	44-118	100	144	195*	30 *	21	7-161		1
Dieldrin		0.0014 U	ug/L	100	68	67	1	17	51-101	100	101	134	28 *	22	30-137		1
Endosulfan I		0.0019 U	ug/L	100	66	64	3	18	50-93	100	110	160 *	37 *	27	10-137		
Endosulfan II	:	0.0018 U	ug/L	1													
Endosulfan sulfate	:	0.0027 U	υg/L	100	42	42	0	12	<u>21</u> -130	100	14 *	43	102*	76	15-125		i
Endrin		0.0018 U	ug/L	100	70	69	1	17	48-130	100	98	134	31	41	33-157		
Endrin aldehyde	:	0.0019 U	υg/L	100	90	90	0	24	37-127	100	73	26	95*	73_	5-141		L
Endrin ketone	:	0.0016 U	ug/L														i
Heptachlor		0.0024 U	ug/L	100	60	58	3	17	28-131	100	24	0	200*	157	0-172		
Heptachlor epoxide		0.0022 U	ug/L	100	66	64	3	17_	51-100	100	23	33	36 *	27	17-131		
Lindane		0.0024 U	ug/L							1							<u> </u>
Methoxychlor		0.0018 U	ug/L	100	82	82	0	23	34-153	100	83	113	31	64	61-148		1
Mirex		0.015 U	ug/L	100	65	64	2	23	39-87	100	70	93	28	53	47-109		1
Toxaphene	i	0.044 U	ua/L														

^{*} Indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

MI U

Matrix Interference

Compound was analyzed for but not detected.

BENCHMARK

EnviroAnalytical, Inc.

FDHRS Certification #E84167 and #84455 FDER Quality Assurance #870594G

Sunlabs Inc.

5460 Beaumont Center Blvd Suite 520 Tampa, FI 33634

Attention: Lori Palmer

Project: Quality Control Data - 10040320

Accuracy Data:

						Sample	+	
Parameter	iD		Date	QC Type	Sample Conc.	Spike Conc.	True Value	% Rec.
TOTAL ORGANIC CARBON	······································		04/11/10	STD	25.50		25.00	102.02
TOTAL ORGANIC CARBON			04/11/10	STD	0.986		1.000	98.60
TOTAL ORGANIC CARBON			04/11/10	STD	51.28		50.00	102.57
TOTAL ORGANIC CARBON			04/11/10	STD	51.52		50.00	103.05
TOTAL ORGANIC CARBON			04/11/10	STD	25.12		25.00	100.48
TOTAL ORGANIC CARBON	•		04/11/10	STD	0.982		0.90	98.20
TOTAL ORGANIC CARBON	10040319	1	04/11/10	SPK	15.59	25.60	10.00	101.30
TOTAL ORGANIC CARBON	10040320	12	04/11/10	SPK	3.837	13.84	10.00	100.00

BENCHMARK

EnviroAnalytical, Inc.

FDHRS Certification #E84167 FDER Quality Assurance #870594G

Sunlabs Inc.

5460 Beaumont Center Blvd Suite 520 Tampa, Fl 33634

Attention: Lorl Palmer

Project: Quality Control Data - 10040320

Precision Data:

				Sample A	Sample B	
Parameter	ID		Date	Conc.	Conc.	% RSD
TOTAL ORGANIC CARBON	10040319	1	04/11/10	15.59	15.47	0.53
TOTAL ORGANIC CARBON	10040320	12	04/11/10	3.837	3.837	0.00

SW	b Benchma Bunlabs	rK		SunLa	ıbs, lı	nc. (Chai	n of (Custo	ody			1/1	ПЦ	102	320	Νō	244	16
Client Name: -	Zunlaha -	MC	•	SunLabs	Projer	ct#							10	٥٣١	יט	Project Nam	ne:		
Contact:	Long Pagmer	2_		Bottle Type		17	PI								\Box	Project	t#: <u>100</u> 0	405	6.07
Address:				Preservativ		- 1	11						\Box			PO	#: <u>10-</u>	241	}9_'
700000	1.00			Matrix			W						\Box			Alt Bill	To:	· ·	ι <u></u>
Phone / Fax: _	MAN		•	Anatysis	/ Metho	xd T													
E-Mall:				1	ested	1	Ŋ	1	j		1				. [
						<	ᆀ	,	[]				1	l	. [Due Date Req	uested*:		
SunLabs	Sample Description		Sat	mpled	# of	<i>;</i>	O		1 1				Ì	-	1				
Sample #	•	į	Date	Time	Bottle	es }	<u>L</u>						_1			FDEP Pr	reApproval sit	te	
	100017		415	1421	1	1	4									Cash rate	es		
	100018		i	1514		_	24						\Box			Remarks / Cor	mments:		
3	100019			1532			4					\Box	\neg						
T T	1000 20			11617									\neg			Í			
5	100021	1	1644			*			,					\Box	ı		•		
6	1000 33	46	1005		-7	10													
7	1000 25	i i	1102			2													
8	100026		1155			7													
<u>a</u>	100038			1343		, ,	ا عر									,			
10	P.60001			1421		I.													
11	100030			1449		\Box	B												
12	100031		A	1523	V	\Box	7									· .			
				<u> </u>												Length of Rec	ord Retention	n If	
										<u>L</u> .,	<u> </u>					other than 5 ye			
Sampler Signature /	/ Date:	Printed Nan	ne / Affiliati	on:				ı	SUN							IT TO BILL FOI			
1 17 1	,		1,00	. —				-		UN	IRETU	IRNED	SAM	PLES	AND.	TO RETURN L			
	ent		<u> </u>					Reilr	nguiche	ad By:	a		.	Relia	ecisi é	d 10:	Date:		Time:
Bottle Type Codes:		Preservative Co	odes:					1 7	1/Ker	<i>C /</i>	/k_		7		11,)	49	43	1115
GV = Glass Vial	GVS = Low Level Volatile IGt	H = Hydrochlor	ric Acid + Ice	S ≈ Sulfuric /	Acid + Ice	,		<u> </u>		<u> </u>			_($\not =$	丛		<u> </u>	<u>`</u>	
GA = Glass Amber	T = Tedler Bag) = ics only		VS = MeOH,	1, OFW, + I	ice		Refir	nquishe	∌d By:			٦	Religio	quishe	d lo:	Date:	[Time:
P = Plastic	O = Other (Specify)	N = Nitric Acid	+ ice	T = Sodium (thiosultate	a + Ica		1					I	i					
S = Soft Jar	<u> </u>	B = Sodium bla		0 = 00har (S	Specify)		<u> </u>												
Metrix Codes:	SO = Soil	Internal Use C	mly					Relit	nquishe	ad By:				Relind	quishe	d To:	Date:	[Time:
A=Air	SOL = Solid		tion Upon Rece										.	İ			- 1		
DW ≈ Drinking Water	SW = Surface Water	Custody Seals			Y/N/			<u> </u>						<u> </u>					
GW = Ground Water	W = Water (Blanks)	intact?		Y/N/			Relin	nquishe	ed By:			•	Relina	quishe	d To:	Date:		Time:	
SE = Sediment						NA						•		i			1		
Internal Use Only	41	iners Intact?		Y/N/			<u> </u>												
Temp upor	Temp upon receipt: °C Samples within holding time					NA.		- II				_		S	unLa	bs, Inc.		20004	
	Sufficient volume for all anal				Y/N/			- 11		;	5460 E	3eaum Ph	ont Ce	anter E 312-RF	3NO., 3 11-940	Sulte 520, Tan 11 / Fax: 813-3	npa, ⊩ionda 3 54-4661	33634	
Received of	on Ice? AN / NA	l-space free?	=	Y/N/	NA		-]]			e-r					om www.Su		JITTS		

Ray 12/09

* See General Terms and Conditions on Reverse

BENCHMARK

EnviroAnalytical, Inc.

FDHRS Certification #E84167 and #84455 FDER Quality Assurance #870594G

Sunlabs Inc.

5460 Beaumont Center Blvd Suite 520 Tampa, FI 33634

Attention: Lori Palmer

Project: Quality Control Data - 10040402

Accuracy Data:

		-		Sample +									
				QC	Sample	Spike	True						
Parameter	IĐ		Date	Туре	Conc.	Conc.	Value	% Rec.					
TOTAL ORGANIC CARBON			04/19/10	STD	51.72		50.00	103.40					
TOTAL ORGANIC CARBON			04/19/10	STD	51.08		50.00	102.20					
TOTAL ORGANIC CARBON			04/19/10	STD	1.000		1.00	100.00					
TOTAL ORGANIC CARBON			04/19/10	STD	25.21		25.00	100.80					
TOTAL ORGANIC CARBON			04/19/10	STD	1.009		1.00	100.90					
TOTAL ORGANIC CARBON			04/19/10	STD	25.32		25.00	101.30					
TOTAL ORGANIC CARBON			04/19/10	STD	51.40		50.00	102.80					
TOTAL ORGANIC CARBON	10040567	1	04/19/10	SPK	-0.009	10.12	10.00	101.30					
TOTAL ORGANIC CARBON	10040402	1	04/19/10	SPK	24.39	33.25	10.00	88.80					
TOTAL ORGANIC CARBON	10040402	2	04/19/10	SPK	57.06	65.38	10.00	81.00					

BENCHMARK

EnviroAnalytical, Inc.

FDHRS Certification #E84167 FDER Quality Assurance #870594G

Sunlabs Inc.

5460 Beaumont Center Blvd Suite 520 Tampa, Fl 33634

Attention: Lori Palmer

Project: Quality Control Data - 10040402

Precision Data:

		Sample A	Sample B			
Parameter	ID		Date	Conc.	Conc.	% RSD
TOTAL ORGANIC CARBON	10040402	1	04/19/10	24.39	24.36	0.07
TOTAL ORGANIC CARBON	10040402	2	04/19/10	57.06	57.29	0.28

Su	b-Benchmi	ank		SunLa	. Ch	ain	of Cu	stod	y						Νº	23	756	
0//	Synlabs. 2 Koritalm	10C		SunLabs	Drolost f	.				1	10	HO) //	る	Project Name			
Client Name:	in Colon	<u> </u>	-	Bottle Type		1	$\overline{}$		\neg	7	$\widetilde{}$		7	- 	Project Name	To	5.11	78 77
Address:	Contraction	CAS		Preservativ		पि ।			_	+	-		+	+-	PO#	10	- 12	32
Addiess.	• •			Matrix		EV				╅	-+		\top	 	Alt Bift To			
Phone / Fax:	-111		ľ	Analysis	/ Method					十	╅		\top	+	1	· 		
E-Mail:	- ONCHO			Requ			- 1		- 1	1					Ì			
	- 0					الوا]				- 1		1		Due Date Reque	sted*:		
SunLabs	Sample Description		Samp	pled	# of	101						- 1		1				1
Sample #	·		Date	Time	Bottles	$ \mathcal{F} $	ı		1			1			FDEP Pre	Approval s	site	
	100082	4	5(10	1302	-					\top	1		\top		Cash rates	• •		
2	100083	- u		1949	1				_	7				\top	Remarks / Com			
6				***						T	\neg				1			
											一				1			
											\neg		7		1	•		
										7			7		1			
									\top	Ť	一			T				
										T	\neg			T	1			}
					_	1 1					_				1			ļ
									$\neg \vdash$	T					1			1
					_					Т	\neg]			
										\top								
											\Box				Length of Recor	d Retentio	on If	
												L		Щ.	other than 5 year			
Sampler Signature	/ Date:	Printed Name /	Affiliation	: A			ı		SUNLA	BS, I	NC. F	RESERV	ES TH	E RIGI	HT TO BILL FOR	DISPOSA	LOFU	NUSED/
()	Ont		Lan	(t)						JNR	ETUR	NED S	MPLE	SAND	TO RETURN UN	USED SA	MPLES	
								Relingu	ished B	^እ		ン	Rel	hquish	ed To:	Date:		Time:
Bottle Type Codes:		Preservative Codes	<u> </u>				1	1//	1	V2			11	ha	16/2	4/-1	70	1) 1
GV = Glass Vial	GVS = Law Lavel Volatile Kit	H = Hydrochloric Ad	cld + tce	S = Suffuric A	void + los			<u> </u>	7 /	<u>y</u>			- 4		1191		- 10	100
GA = Glass Amber	T = Tedler Beg	1 = ice ority		VS = MeOH,	OFW, + tos			Relinqu	ished B	y:			Refi	ngulsh	ed To:	Date:		Time:
P = Plastic	O = Other (Specify)	N = Nitric Acid + ice		T = Sodium t	Nosulitate + ica	•	•							•		1		İ
S ≈ Soll Jar		B = Sodium bisutilit		O = Other (S	pecity)								-					
Metrix Codes:	SO • Sol	Internal Use Only						Relinqu	ished B	y:			Reli	nquish	ed To:	Date:		Time:
A = Air	SOL ≈ Solid	1	Semple Condition Upon Receipt;										1					;
DW = Orinking Water	SW = Surface Water	1	ustody Seels present? Y / N / NA										-			 		
GW = Ground Water	W = Water (Bienks)		stody Seals intact? Y / N / NA						ished B	y:			Reli	nquish	ed io:	Date:		Time:
SE = Sediment Internal Use Only	O = Other (Spedily)	Shipping Bills attac Sample containers			Y/N/NA Y/N/NA						•		1			1		
1	inti			Y/N/NA				<u> </u>		<u> </u>		_			ــــــــــــــــــــــــــــــــــــــ			
lemb abou	Temp upon receipt: C Samples within holding time									EAA	RA DA	alimon			abs, Inc. Suite 520, Tampi	- Florida	33B34	11
Received										340	OC DO				01 / Fax: 813-354		00004	. []
1/anaisan	Received on Ice (Y)/ N / NA Are violate head-space free? Proper containers and prese							l			e-m8	all: Info@	§SunLa	absinc	com www.Sunt	absinc.co	om	

ŕ			SunLa	abs, Inc	. Ch	nain	of C	Custo	ody				•		Nº	23	663
Client Name:	TASK .	(1/2)	SunLabs	Project #	<u>!</u>	1	00	40	8.	0)			Project Name			n Orlando
Contact:	Susan Toben		Bottle Type		GA	TP			Ī	$\neg \top$	T			Project #	602	15	
			Preservativ		I	14				\neg	\neg			PO#			
	M4 Doza Pr		Matrix		BW				$\neg \uparrow$		$\neg \uparrow$				Avcas	dis	
Phone / Fax:	(342) 383-0717			/ Method	<u> </u>	<u> </u>									Aller	2011	ist
E-Mail:	(20)] -	ested))])))))]	}			
			1,040	.03.00	3	12/2								Due Date Reque	ested*:		
SunLabs	Sample Description	Sam	pled	# of	25	112		ĺ		ŀ		ľ		1			
Sample #		Date	Time	Bottles	ľ	ŀ								FDEP Pre	Annowal sit		···-
100017	Co-Gw-MW-49-		1421	2	1	\vdash			$\neg +$		\dashv	┰┼	$\neg +$	Cash rates		æ	
1000158	60- Gr- MW- 29 -		1514	2	1	+	1-1		\rightarrow		\dashv	-+		Remarks / Com			
100019	(D-BW-MW-11-S			554	11	+	\vdash	-		十	\dashv		\dashv	IXemarks / Comp	nents:		
10000	60-6W- MW-47 (1617	2	1	1	-		_	\dashv	-+	-1			•		
100 500	10-84-17W-27T		1417		_	<u> </u>	+		\dashv	┰	\dashv		_	- -{}·			
10000	(0-GW-MW-48)		1644	2	-		\vdash	-				-	-+				
100023		23 m 4-4-10		-5	 	1 7	+		$\overline{}$	\dashv	$\neg +$	-	-				į.
100093	CO-GW-MW-15				 	'				\dashv	\dashv	\dashv	_	\dashv			
100024	CO-GW-MW-119		1040		7	 		$\vdash \dashv$			\dashv	一十		-			
100025	(D-GW-MW-32		1102	7	\vdash	7	-		-+				\dashv				
1000976	00-0N-MW-30			-5	++	 	\vdash		-+	\dashv	-+		-+-				
100027	CO-GW-MW-411			+	+	┸		-+	-+	-+			-+				1
100038	00-GW-MW-44		1343	2	-	 , -	 -		-+	\dashv	\dashv	-	-+	Length of Recor	d Detection		
100029	(2)-6H-MW-44		1121		 	 	\vdash		$\overline{}$	\dashv	\dashv		$\neg +$	other than 5 year		1 17	Ì
Sampler Signature		Printed Name / Affiliation	1.17 <i>2</i> .				┝┯┙	CLIM	ARS	INIC E	ECE	2//E8	THE D	GHT TO BILL FOR		<u> </u>	
Sampler Signature	- 1.1	1 1	- 1	11 مروسد				SUN									
12/2/1	ala 14-6-10	1 Try Haush	m / -	THE			Rolling	quished		ETUR	MED			ND TO RETURN UN shed To:	_		Time:
Bottle Type Codes:		Preservetive Codes:			_		TK6		108		ノ		nomiqui		Date:	1	Time:
GV = Glass Vial	OVD - I I aval Valentie Vit	H = Hydrochloric Acid + Ice						1	-		7	ح ا	~	Hach	4/5/	10	}
GA = Glass Amber	GVS = Low Level Volatile Kit	= ce only	S = Sulfurio			-	Polin	nuishe	1000	-4	_	_	Polingui	shed To:	Date:		Time:
P = Plastic	T = Tedlar Bag O = Other (Specify)	N = Nitric Acid + Ice	VS = MeOH,				I Nomin		211	a(/		ſ	-17	siled 10.	1 .		Time:
S = Soil Jar	O is Other (Specify)	B = Sodium bisutfite + Ice		thiosulfate + ice			1.	13	71		~·	. [//Su	e Ke	4-8-	ld	J.K.
Matrix Codes:	SO = Soil	Internal Use Only	O ≈ Other (S	peciy)			Reline	quished	1 Bv				Relinqui	shed To:	Date:		Time:
A = Air	SOL = Solid	Sample Condition Upon Regal	ot:	_				quiario	.			ľ	rom qui	31.00 10.	Date.	- 1	Tillie.
DW = Drinking Water	SW = Surface Water	Custody Seels present?	_	YIN Q													
GW = Ground Water	W = Water (Blanks)	Custody Seals Intact?		Y/N (NA)			Reline	quished	I Rv				Relinqui	shed To:	Date:		Time;
SE = Sediment	O = Other (Specify)	Shipping Bills attached?		YIN(NA)				40.00	- - j.				ciqui	J	Date.	}	
Internal Use Only	C - Outer (opening)	Sample containers intact?	(Z'N'NA		-						1			1		
Temp upor	7	DIN/NA									6		<u> </u>				
.c.np apoi	>	MININA]]		54	60 Be	മധനം	nt Ce		Labs, Inc. d., Suite 520, Tamp:	a Florida 3	3634	. .		
Received of	on Ice (Y) N / NA	Are vials head-space free?	`	YININ		,		-	٠,		Pho	ne: 8	13-881-	9401 / Fax: 813-354	-4661		
		Proper containers and preserve	ativ es ? (Y) N / NA		,				e-ma	ii): info	o@S∟	ınLabsir	nc.com www.Sunt	absinc.com	n	

		(2)	2)	SunLabs, Inc. Chain of Custody											Νō	236	662	
Client Name:	TASK .	Q1		SunLabs	Project #	¥		100	14 0	98	۰0-	7			Project Name	Che	vvol	orkano
Contact:	Susan Tobe	No.		Bottle Type		GA	IP	Γ Τ	一十	$\neg \neg$			П		Project #	600	715	TOP MIN
Address:	27751 Liketing	tet		Preservativ		宁	IF	1		\neg			一		PO#			
71247000.	MF Dora, FL			Matrix	<u> </u>	32			$\neg +$		-	一十	一		Alt Bill To	Ava	Aic	
Phone / Fax:	(00 000 -010			Analysis	/ Method	 	ř	1				一十	寸	-1-	⊣		vetus	21
E-Mail:		<u>-</u>		1 -	ested	}	<u> </u>	1 1	1	1	}	1)	1	71110	0 10	a
2 (100)			_	(Nequ		88	19			ľ	ı		- 1		Due Date Reque	sted*:		
SunLabs	Sample Description		San	npled	# of	188	12			- 1	- 1	ı						
Sample #	·		Date	Time	Bottles	Į	ľ		_ 1				- 1	- 1	FDEP Pre	oproval si	te	
100030	CO-GW-MW-45	3	4-6-10	1449	2	17	17				_		寸		Cash rates			
100 031	co-ow-mw-45		4-6-10	1923	2	T	17		$\neg \neg$				\neg		Remarks / Comp			
100032	00-6W-MW-16	<u> </u>	47-10	1757		17	Τ_			\neg			寸		7			
100033	00-6W-MW-16		4-7-10	1414		17							寸		7			
100034	CO-GW-MW-36		4-7-0		7	17									7			
						1	T		\neg	$\neg \uparrow$		_	\neg		7			1
			 			1					_		一		1			
			 			1	 	1		\neg		-	\dashv	\dashv	7			}
			 			 	 		$\neg +$				_					
			 			+					 †	-+	-		┪			.
			 			╁┈	├	╂─╅		\dashv	─┤		\dashv	_+	┪			
			 			┼─	 	 	$\neg \dagger$	_			\dashv		╡			
			 			+		1	~-	-			┪	-	Length of Record	. Potention	· if	
			 			+-	 				_	+	\neg		other than \$ year		· ''	
Sampler Signature	/ Date	Printed Nan	ne / Affiliation	n: ,					SUNL	ABS,	INC.	RESER	VES	THE RIC	HT TO BILL FOR D	DISPOSAL	OF UN	USED/
Soll	alc. 1 4-7-10		Harbi		THEN	,									TO RETURN DIN			. %.2
2711	1 9-1-10	19	tianni	/ /	[// //			Relino	uished				-	Relinquis		Date:	$\overline{}$	Time:
Bottle Type Codes:		Preservative Co	odes:					عر آ							hts//	1,61 -	JIN	
GV = Glass Vial	GVS = Low Level Voletile Kit	H = Hydrochion		S = Suffuric A	kcid + Ice		,	//	2		75	-e-	٦	Z	BAICE	4/5	/10	
GA = Glass Amber	T = Tedlar Bag	I = Ice only		VS = MeOH,	OFW, + Ice		•	Relina	uished	BV	77		\neg	Religates	hed To:	Date:	-	Time:
P = Plastic	O = Other (Specify)	N = Nitric Acid	+ Ice	T = Sodium t	hiosulfate + ice	,		١.	12	\mathcal{H}_{λ}	(/,		- {	19	, D	4-8.	ا داــ	0
S = Soil Jar		B = Sodium bis	ulfite + Ice	O = Other (S	pecify)			4	20	714			ł	1/20		14-0	10	P.15
Matrix Codes.	SO = Soil	Internal Use C	Only					Reling	uished	Ву:			7	Relinquis	hed To:	Date:		Time:
A = Air	SOL = Solid	Sample Consu	tion Upon Receipt:						1	•			1	ł				
DW = Drinking Water	SW = Surface Water	Custody Seals	present?		Y / N /)									}	- 1		
GW = Ground Water	W = Water (Blanks)	Custody Seals	ody Seals Intact? Y / N / P Relinquished By:					By:				Relinquis	hed To:	Date:	-	Time:		
SE = Sediment	Chimina Bills at Auto				YINI			1						-			ļ	}
Internal Use Only	ners Intact?	(Y) N / NA			L									j			
Temp upor	holding times?	•	Y) N/NA		- 1							Sun	Labs, Inc.					
· •	7	Sufficient volur	ne for all analys	•	3) N / NA]]		5-	460 B			nter Blvd	., Suite 520, Tampa		3634	}}
Received of	on Ice? Y N N NA	Are viels head.	space free?		YININ	'		{ }			۰.				401 / Fax: 813-354		_	Ŋ.
		Proper contain	ers and preserva	stives?	Y) N T NA						e-m	ian: into	യ്യാ	INLADSING	c.com www.SunL	apsinc.col	[1]	

		•	SunLabs, Inc. Chain of Custody													•	Nº 2	3661
Client Name:	TASK			SunLabs	Project #			. *	Or	10	<u>E</u>	,0	7			Project Name:	Chern	on Orlando
Contact:	Susah Tober			Bottle Type		GX		C*								Project #:	60210	<u> </u>
Address:	27751 Weetin	ed		Preservativ	θ	1		1								PO#:		
	Mt Dora, Fr			Matrix		BW	CW	50								Alt Bill To:	House	iš
Phone / Fax:	(352)783-6717			Analysis	/ Method			7.4] ,	Alven.	Just
E-Mail :				Regu	ested	2	١.,	·3		. 1	Í					1	_	
						8	13	0.5						ŀ		Due Date Reques	sted*:	
SunLabs	Sample Description		San	pled	# of	100	11	イギ		1 1		ľ				ĺ		
Sample #			Date	Time	Bottles	1		Pa			ı		- ;			FDEP PreA	poroval site	 -
1000191	CO-GW-MW-11	>	4-8-10	0907	1	1									_	Cash rates		i
100080	CO-G10- NAW-10		4-8-10	0907		17	 				$\neg \dagger$					Remarks / Comm	onts.	
120081	6-66- MW- 3		4-8-10	0941	3	13	_		\vdash	\vdash						remarks / comm	onw.	}
00089	0-60-MW-5		4-8-10	1202	3	17	 	 	 	\vdash	-+			-	_			
			4-8-10	1249	5	╁┾╴	+ 7	-	 				-			1		1
100083	CO-GW-MW	200		1300		15	 '-	├	├─					 }				
1000284	W-BW-EWBK-I	0-6w-EQBK-1 4-8-10				1-	├		 				-			} .		
100000	60 60 4.00	0-50-comp-1 4-8-10				├	├──	-,-	 	\vdash						1		
100085	W-50- COMP-	0-50-comp-1 4-8-10				├ ─	┝		├—					-		ł		
	_ 		<u> </u>	<u> </u>		-	{		├—					\vdash		-		
			<u> </u>			1	├—	└		<u> </u>				\longrightarrow		1		
			ļ			↓ —	 	<u> </u>	├—					\longrightarrow				
			<u> </u>			↓	<u> </u>		<u> </u>									
			<u> </u>		. <u> </u>	<u> </u>	<u> </u>	_	ļ							Length of Record	Retention if	1
			<u> </u>			<u> </u>	<u> </u>		<u> </u>		1		<u> </u>			other than 5 year		
Sampler Signature	(Vate):	Printed Narr						ł	SUN	NLABS	, INC.	RESE	RVE	S THE	RIGH	IT TO BILL FOR D	ISPOSAL OF	UNUSED/
Jul.	4-8-10	Tint	takni	-/ Tx	ソン				_	<u>UN</u>	RETU	RNEC	SAM	PLES.	AND	TO RETURN UNL	ISED SAMPL	ES.
	DC1181	1 (7)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ·,·				Relin	quishe	d By	_			Reling	luish	ed To:	Date:	Time:
Bottle Type Codes:	•	Preservative Co	des:					19	/		~	ر ر		2		W Va	4/5/1	
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochlori	ic Acid + Ice	S = Sulfuric A	cid + Ice		,	X	n				<u></u>		Q	Die	1/5/1	1 1
GA = Glass Amber	T = Tedlar Bag	I = Ice only		VS≈ MeOH,	OFW, + Ice		(Relin	quish	ed By;	7	1		Reling	uishe	ed To:	Date:	Time:
P = Plastic	O = Other (Specify)	N = Nitric Acid	+ Ice	T = Sodium t	hiosulfate + lc:	В] .	1	H	// '	. '	•	•	Fe	NCV.	4-8-16	1500
S = Soil Jar		B = Sodium bis	ulfite + Ice	O = Other (S	becify) _	_			0	/ y \				' !		νοκ	9-9-10	11900
Metrix Codes:	SO = Sofi	Internal Use O	nly					Relin	quishe	ed By:				Relino	uishe	ed To:	Date)	Time:
A = Air	SOL = Solid	Sample Conditi	on Upon Recei	<u>ot:</u>					100	101	/			$ \cap $	1	0 1000	1419/10	
DW = Drinking Water	SW = Surface Water	Custody Seals	present?		Y/N/W			\	174	\mathcal{M}_{l}				1'	1r	V best /C	171111	
GW = Ground Water	W = Water (Blanks)	Custody Seals	intact?		YINIK)		Relin	auishe	ed By:				Reling	uish	ed To:	Date:	Time:
SE = Sediment	O = Other (Specify)	Shipping Bilts a	ttached?		YINIKA	1			72.5/1	- - , .					,			rinio.
Internal Use Only	0 - Other (Operary)	ers intact?		MINKE	١.		ľ			•			ĺ			[1	
Tomo upor	receipt: 1,2 °C	Samples within			YI N I NA			h-			==	===		 _	=		!	
renth abor	Temp upon receipt: 18 °C Samples within holding times							<u> </u>			460 P	A SI IF	ont C			abs, Inc. Suite 520, Tampa	Florida 3363	, 1
Deceived a		Y / N (NA)			11			~00 D					01 / Fax: 813-354-		·			
Received on Ice? (Y) N / NA Are visits head-space free? Proper containers and preservations.					X) N / NA			}}			е-п	nail: in	fo@S	unLab	sinc.	com www.SunL	absinc.com	
					٠٠٠. ست			11										II II

Generator's Non-hazardous Waste Profile Sheet

Requested Disposal Facility Okeechobee	Landfill Profile Number 105183FL
WASTE MANAGEMENT Renewal for Profile Number	Waste Approval Expiration Date
A. Waste Generator Facility Information (must	reflect location of waste generation/origin)
1. Generator Name: Chevron EMC	
2. Site Address: 3100 North Orange Blossom Trail	7. Email Address: markstella@chevron.com
3. City/ZIP: Orlando, 32804	8. Phone: 713.432.2643 9. FAX: 713.432.2624
4. State: Florida	10. NAICS Code:
5. County: Orange	11. Generator USEPA ID #:
6. Contact Name/Title: Mark Stella/Project Manager	
B. Customer Information 🔾 same as above	P. O. Number:
1. Customer Name: Chevron EMC	6. Phone: 713.432.2643 FAX: 713.432.2624
	7. Transporter Name: Waste Management, Inc.
3. City, State and ZIP: Bellaire, Texas, 77401	8. Transporter ID # (if appl.):
·	9. Transporter Address:
·	10. City, State and ZIP:
C. Waste Stream Information	
1. DESCRIPTION	
a. Common Waste Name: Soil	
State Waste Code(s):	<u> </u>
The second secon	
c. Typical Color(s): Brown	
d. Strong Odor? Yes O No Describe: Organic	
	wder 🚨 Semi-Solid or Sludge 🖾 Other:
f. Layers? Single layer Multi-layer MA	
g. Water Reactive? Yes You No If Yes, Describe:	•
h. Free Liquid Range (%):	
i. pH Range: □ ≤2 □ 2.1-12.4 □ ≥12.5 ☑ NA	
j. Liquid Flash Point: □ < 140°F □ ≥ 140°F k. Flammable Solid: □ Yes ☑ No	MA(solid) Actual:
l. Physical Constituents: List all constituents of waste stream	m - (e.g. Soil 0-80%, Wood 0-20%): 🖵 (See Attached)
Constituents (Total Composition Must be > 100%)	Lower Range Unit of Measure Upper Range Unit of Measure
1. TCLP-Metals 2. TCLP Herbicides	Nondetect Nondetect
2. TCLP Herbicides. 3. TCLP Mercury	Nondetect
4. TCLP-Pesticides (chlordane - regulated level = 0.03 mg/L)	0.0053 I mg/L
5. TCLP Semivolatiles 6. TCLP Volatiles (2-butanone - regulated level = 200 mg/L)	Nondetect mg/L mg/L
2. ESTIMATED QUANTITY OF WASTE AND SHIPPING INFORMATIO	N
a. ☑ One Time Event ☐ Base ☐ Repeat Event	
b. Estimated Annual Quantity: 1,845	
c. Shipping Frequency: One time event Units p	er Month Quarter Year One Time Other

e. USDOT Shipping Description (if applicable): _

3. SAFETY REQUIREMENTS (Handling, PPE, etc.): Level D (gloves, steel-toe boots, hard hat, and safety glasses)

National Account Customer

Generator's Non-hazardous Waste Profile Sheet

105183FL

D. Regulatory Status (Please check appropriate	responses)
1. Is this a USEPA (40 CFR Part 261)/State hazardous waste? If yes, o	ntact your sales representative.
2. Is this waste included in one or more of categories below (Check a	
☐ Delisted Hazardous Waste ☐ E	cluded Wastes Under 40 CFR 261.4
☐ Treated Hazardous Waste Debris ☐ Tr	ated Characteristic Hazardous Waste
3. Is the waste from a Federal (40 CFR 300, Appendix B) or state man	
4. Does the waste represented by this waste profile sheet contain rad	· · · · · · · · · · · · · · · · · · ·
a. If yes, is disposal regulated by the Nuclear Regulatory Commissi	
b. If yes, is disposal regulated by a State Agency for radioactive wa	
5. Does the waste represented by this waste profile sheet contain con	
a. If yes, is disposal regulated under TSCA?	□ Yes □ No □ Yes Ø No
6. Does the waste contain untreated, regulated, medical or infectious	######################################
7. Does the waste contain asbestos?	•
8. Is this profile for remediation waste from a facility that is a m	jor source of Hazardous Air Pollutants (Site Remediation NESHAP,
40 CFR:63 subpart:GGGGG)?	☐ Yes 🗹 No
If yes, does the waste contain <500 ppmw VOHAPs at the	point of determination?
E. Generator Certification (Please read and cert	fy by signature below)
By signing this Generator's Waste Profile Sheet, I hereby certify that a	
Information submitted in this profile and all attached documents of the state	
Relevant information within the possession of the Generator regard	
disclosed to WM/the Contractor;	ng knommer suspected nazaras percanning to this ness has sadi
3. Analytical data attached pertaining to the profiled waste was deriv	d from tecting a representative sample in accordance with
40 CFR 261.20(c) or equivalent rules; and	d from testing a representative sample in decorations and
4. Changes that occur in the character of the waste (i.e. changes in t	a process or new applytical) will be identified by the Generator
and disclosed to WM (and the Contractor if applicable) prior to pro	nuing the waste to wer (and the contractor it applicable).
5. Check all that apply:	t in it is a second of the sec
Attached analytical pertains to the waste. Identify laboratory 8	
	Mercury, Pesticides, Semivolatiles, and Volatiles # Pages: 9
	aste (identify by laboratory & sample ID #'s and parameters tested).
Attachment #:	
 Additional information necessary to characterize the profiled w 	iste has been attached (other than analytical).
Indicate the number of attached pages:	•
$oldsymbol{\square}$ I am an agent signing on behalf of the Generator, and the dele	pation of authority to me from the Generator for this signature is
available upon request.	
☐ By Generator process knowledge, the following waste is not a l	sted waste and is below all TCLP regulatory limits.
Certification Signature: 1/12.12 5921/4	Title: Project Manager
Company Name: Chevron EMC	Name (Print): Mark Stella
Date: January 22, 2010	
Manager and Markette (Colors 1991) D. D. C. Colors	WM USE ONLY
·	Approval Decision: Approved Not Approved
	Waste Approval Expiration Date:
Management Facility Precautions, Special Handling Procedures	
on approval:	☐ Shipment must be scheduled into disposal facility
	————
	Date:
	•
State Authorization (if Required):	Date:

January 14, 2010

Susan Tobin TASK Environmental, Inc. 27751 Lake Jem Road Mount Dora, FL 32757

Re:

SunLabs Project Number:

091224.05

Client Project Description:

Chevron Orlando

Dear Mrs. Tobin:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
94989	CO-SO-WC-01	12/23/2009
94990	TCLP Leachate/94989 (CO-SO-WC-01)	
94991	TCLP ZHE Leachate/94989 (CO-SO-WC-0	•

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer

Vice President, Laboratory Operations

Enclosures

SunLabs **Project Number** TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number Sample Designation

94989

CO-SO-WC-01

Matrix

Soil

Date Collected

12/23/2009 13:30

Date Received

12/24/2009 11:15

Parameters	Method	Units	Results	Dil Facti	MDL or	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Total Cyanide									
Date Analyzed			1/5/10	1				01/05/10 17:24	
Cyanide, Total	9012A	mg/kg	0.869 U	1	0.869	1.0		01/05/10 17:24	
pH									
pH, Solid	9045	SU	7.9	-1				. 01/04/10	01/04/10
Sulfide									
Date Analyzed		•	12/29/09	1				12/29/09 13:50	
Sulfide	9030A	mg/kg	3.80 U	1	3.60	25		12/29/09 13:50	
TCLP Extraction Date Leached - TCLP	i311		12/28/09	1.				12/28/09 17:00	
TCLP-Zero Headspace Extraction Date Leached	1311		12/30/09	1				12/30/09 15:00	12/30/09

Project Number

091224.05

TASK Environmental, Inc.

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number Sample Designation

94990

TCLP Leachate/94989 (CO-SO-WC-01)

Matrix

TCLP Leachate

Date Collected Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Metals					•				
Date Digested	3005		12/30/2009						12/30/09 09:2
Date Analyzed	6010		12/30/2009	1				12/30/09 17:08	
Arsenic	6010	mg/L	0.1 U	1	0.003	0.1	7440-38-2	12/30/09 17:08	12/30/09 09:2
Barium	6010	mg/L	0,1 U	į.	0.001	0.1	7440-39-3	12/30/09 17:08	12/30/09 09:2
Cadmium	6010	mg/L	0.1 U	:1	0.0006		7440-43-9	12/30/09 17:08	12/30/09 09:2
Chromium	6010	mg/L	0.1 U	1	0.0035		7 440-4 7-3	12/30/09 17:08	12/30/09 09:2
Lead	6010	mg/L	0.1 U	1	0.0022		7439-92-1	12/30/09 17:08	12/30/09 09:2
Selenium	6010	mg/L	0.1 U	1	0.0047		7782-49-2	12/30/09 17:08	12/30/09 09:2
Silver	6010	mg/L_	0.1 U	1	0.0032	0.1	7440-22-4	12/30/09 17:08	12/30/09 09:20
TCLP Herbicides by Method 8321									
Date Extracted	8321:		01/05/10						01/05/10 18:3
Date Analyzed	8321		01/13/10	1				01/13/10 12:46	•
2,4-Dichlorophenylacetic acid	8321	%	71	. 10			DEP-SURR-	01/13/10 12:46	01/05/10 18:3
2,4-D	8321	mg/L	0.016 U	10	0.016	50	94-75-7	01/13/10 12:46	01/05/10 18:3
2,4,5-TP (Silvex)	8321	mg/L	0.022 U	10	0.022	5	93-72-1	01/13/10 12:46	01/05/10 18:3
TCLP - Mercury									
Date Digested	7470		12/29/2009						12/29/09 14:3
Date Analyzed	7470		12/30/09 S19	1				12/30/09 17:59	
Mercury	7470	mg/L	0.00020 U	_1	0.00020	0.05	7439-97-6	12/30/09 17:59	12/29/09 14:3
TCLP-Pesticides by Method 8081			•						
Date Extracted	3510		01/05/10						01/05/10 16:4
Date Analyzed	8081		1/9/10	1				01/09/10 01:14	
Surrogate	8081	%	74	1				01/09/10 01:14	01/05/10 16:4
Chlordane	8081	mg/L.	0.0053 1	1	0.0001	0.03	57-74-9	01/12/10 16:08	01/05/10 16:4
Endrin	8081	mg/L	0.00009 U	1	0.00009	0.02	72-20-8	01/09/10 01:14	01/05/10 16:4
Heptachlor	8081	mg/L	0.00012 U	1	0.00012	0.008	7 6-44 -8	01/09/10 01:14	01/05/10 16:4
Heptachlor epoxide	8081	mg/L	0.00011 U	1.	0.0001	0.008	1024-57-3	01/09/10 01:14	01/05/10 16:4
Lindane	8081	mg/L	0.00012 U	1	0.00012	0.4	58-89-9	01/09/10 01:14	01/05/10 16:4
Methoxychlor	8081	mg/L	0.00009 U	1.	0.00009	0.1	72-43-5	01/09/10 01:14	01/05/10 16:4
Toxaphene	8081	mg/L	0.002 ປ	.1	0.002	0.03	8001-35-2	01/09/10 01:14	01/05/10 16:4
TCLP Semivolatiles by Method 8270									
Date Extracted	3510		01/05/10						01/05/10 16:4
Date Analyzed	8270		1/8/10	1				01/08/10 21:21	
2-Fluorobiphenyl (surrogate)	8270	%	87	1			321-60-8	01/08/10 21:21	01/05/10 16:4
2-Fluorophenol (surrogate)	8270	%	29	1			367-12-4	01/08/10 21:21	01/05/10 16:4
Nitrobenzene-d5 (surrogate)	8270	%	.589	1				01/08/10 21:21	01/05/10 16:4
Phenol-d6 (surrogate)	8270	%%	18	1				01/08/10 21:21	01/05/10 16:4
Terphenyl-d14 (surrogate)	8270	%	149	.1.				01/08/10 21:21	01/05/10 16:4
2,4,6-Tribromophenol (surrogate)	8270	%	58	1			118-79-6	01/08/10 21:21	01/05/10 16:4
1,4-Dichlorobenzene	8270	mg/L	0.05 ປ	1	0.05	0.1	106-46-7	01/08/10 21:21	01/05/10 16:4
2,4-Dinitrotoluene	. 8270	mg/L	0.065 U	i	0.065	0.13	121-14-2	01/08/10 21:21	01/05/10 16:4
Hexachlorobenzene	8270	mg/L	0.065 U	1	0.065	0.13	118-74-1	01/08/10 21:21	01/05/10 16:4

SunLabs, Inc.

5460 Beaumont Center Blvd., Suite 520 Tampa, FL 33634

Laboratory ID Number - E84809

Phone: (813) 881-9401 Email: Info@SunLabsInc.com

Website: www.SunLabstnc.com

SunLabs Project Number

091224.05

TASK Environmental, Inc.

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number

Sample Designation

94990

TCLP Leachate/94989 (CO-SO-WC-01)

Matrix

TCLP Leachate

Date Collected Date Received

Parameters	Method	Units	Results	Dil Fact	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Semivolatiles by Method 8270								•	
Hexachlorobutadiene	8270	mg/L	0.025 U	1	0.025	0.5	87-68-3	01/08/10 21:21	01/05/10 16:45
Hexachloroethane	8270	mg/L	1.5 U	1	1.5	3	67-72-1	01/08/10 21:21	01/05/10 16:45
m&p-cresol	8270	mg/L	100 U	1	100	200	_	01/08/10 21:21	01/05/10 16:45
Nitrobenzene	8270	mg/L	1 U	1	1	2	98-95-3	01/08/10 21:21	01/05/10 16:45
o-cresol	8270	mg/L	100 U	1	100	200	95-48-7	01/08/10 21:21	01/05/10 16:45
Pentachlorophenol	8270	mg/L	20 U	1	20	100	87-86-5	01/08/10 21:21	01/05/10 16:45
Pyridine	8270	mg/L	1.3 U	1	1.3	2.5	110-86-1	01/08/10 21:21	01/05/10 16:45
2,4,5-Trichlorophenol	8270	mg/L	200 U	1	200	400	95-95-4	01/08/10 21:21	01/05/10 16:45
2,4,6-Trichlorophenol	8270	mg/L	1 U	1	1.	2	88-06-2	01/08/10 21:21	01/05/10 16:45

SunLabs Project Number

091224.05

TASK Environmental, Inc.

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number Sample Designation

94991

TCLP ZHE Leachate/94989 (CO-SO-WC-

01)

Matrix

TCLP ZHE Leachate

Date Collected

Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL.	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Volatiles by EPA Method 8260									
Date Analyzed			01/06/10	1				01/06/10 17:42	
Bromofluorobenzene (surrogate)	8260	%	96	1			460-00-4	01/06/10 17:42	· · · · · · · · · · · · · · · · · · ·
Dibromofluoromethane (surrogate)	8260	%	98	1				01/06/10 17:42	
Toluene-d8 (surrogate)	8260	%	91	1			2037-26-5	01/06/10 17:42	
Benzene	8260	mg/L	0.1 U	1	0.1	0.5	71-43-2	01/06/10 17:42	
2-Butanone	8260	mg/L	0.88° I	1	0.4	5	78-93-3	01/06/10 17:42	
Carbon tetrachloride	8260	mg/L	0.2.:U	1	0.2	0.8	56-23-5	01/06/10 . 17:42	
Chlorobenzene	8260	mg/L	0.2 U	1	0.2	0.8	108-90-7	01/06/10 17:42	
Chloroform	8260	mg/L	0.1 U	1	0.1	0.5	67-66-3	01/06/10 17:42	
1,4-Dichlorobenzene	8260	mg/L	0.4 U	i	0.4	1:6	106-46-7	01/06/10 17:42	-
1,2-Dichloroethane	8260	mg/L	0.2 U	1	0.2	8.0	107-06-2	01/06/10 17:42	
1,1-Dichloroethene	8260	mg/L	0.15 U	1	0.15	0.6	75-35-4	01/06/10 17:42	
Tetrachloroethene	8260	mg/L	0.25 U	1	0.25	1	127-18-4	01/06/10 17:42	
Trichloroethene	8260	mg/L	0.2 U	1	0.2	0.8	79-01-6	01/05/10 17:42	
Vinyl chloride	8260	ma/L	0.09 U	1	0.09	0.5	75-01-4	01/06/10 17:42	

U

Report of Laboratory Analysis

SunLabs Project Number

091224.05

TASK Environmental, Inc.

Project Description

Chevron Orlando

January 14, 2010

Footnotes SunLabs is not currently NELAC certified for this analyte. The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. LCS Laboratory Control Sample LCSD Laboratory Control Sample Duplicate MB. Method Blank MS Matrix Spike Matrix Spike Duplicate MSD Sample not analyzed at dient's request. NA Sample held beyond the accepted holding time. RL. RL(reporting limit) = PQL(practical quantitation limit). RPD Relative Percent Difference 519 Analysis performed by Millenium Laboratories, Inc. NELAC# E84899.

Indicates that the analyte was detected in both the sample and the associated method blank.

Compound was analyzed for but not detected.

Quality Control Data

Project Number

TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

Batch No:	D2604									As	sociated	Samples					
											990						
Test	TCLP - N	nercury								- 1							
TestCode:	TCLP-Hq								<u>:</u>								
Compound		Blank	:	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC I RPD	imits LCS	MS Spike	MS %Rec	MSD %Rec	RPD	QC L RPD	imits— MS	Dup RPD	Qualifiers
Parent Sample Number Mercury		0.00016 U	mg/L							0.010	94990 87					İ	
Batch No:	D2621					•				As	socialed	Samples	· ·				
Test:	TCLP Me	etals						•		94	990						
TestCode:	TCLP-7																
Compound		Blank		LCS Spike	LCS %Rec	LCSD %Rec	RPD %	-QC L RPD	.imits LCS	MS Spike	MS *Rec	MSD %Rec	RPD %	QC L RPD	imits MS	Dup RPD	Qualifiers
Parent Sample Number				i						İ	94900					;	i
Arsenic		0.1 U	mg/l_							1000	.97_				74-113	<u> </u>	1
Barium		0.1 U	mg/L							1000	.97				71-121		
Cadmium			mg/L	1						1000	103				68-113	i	
Chromium			mg/L							1000	102				61-126	:	
Lead			mg/L	1						1000	99				61-115	!	
Selenium		0.1 U	mq/L	1	_					1000	104_				73-114	l	
Silver		0.1 U	mg/L					_		1000	:90				68-112	1	1
Test:	1 OLI OC	mivolatiles b	i iticui	~~~~						- 1							
	TCLP-SV	1		1		1000				1		1100	620			. D	0
	TCLP-SV	Blank		LCS. Spike	LCS %Rec	LCSD %Rec	RPD %	QC L	imits—	MS Spike	MS %Rec	MSD %Rec	RPD %	QC L	imits— MS	Dup RPD	Qualifier
Compound	TCLP-SV	Blank													MS		Qualifien
Compound Perent Sample Number		Blank 87	%								%Rec				MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluorobliphenyl (surro	ogate)	<u> </u>	% %								%Rec				MS	RPD	Qualifien
Compound Parent Sample Number 2-Fluorobliphenyl (surro 2-Fluorophenol (surro	ogate)	87	%								%Rec				MS	RPD	Qualifier
Compound Perent Somple Number 2-Fluoroblphenyl (surro 2-Fluorophenol (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate)	ogate) jate) ogate)	87 38	% % %								%Rec				MS	RPD	Qualifien
Compound Perent Somple Number 2-Fluoroblpheny! (surro 2-Fluoropheno! (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surrog	ogate) jate) ogate) ate)	87 38 89 19 126	% % %								%Rec				MS	RPD	Qualifier
Compound Perent Somple Number 2-Fluoroblphenry! (surro 2-Fluoropheno! (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surroga 2,4,6-Tribromopheno! (ogate) jate) ogate) ate)	87 38 89 19	% % % %							Spike	%Rec 94990				MS	RPD	Qualifiers
Compound Perent Somple Number 2-Fluoroblphenry! (surro 2-Fluoropheno! (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surroga 2.4,6-Tribromopheno! (1,4-Dichlorobenzene	ogate) jate) ogate) ate)	87 38 89 19 126 76	% % %							Spike	%Rec 94990 70				MS	RPD	Qualifiers
Compound 2-Fluorobiphenyl (surro 2-Fluorobiphenyl (surro 2-Fluorophenol (surro Nitrobenzene-d5 (surro phenol-d6 (surrogate) 1-erphenyl-d14 (surrogate) 2-4,6-Tritorrophenol (1,4-Dichlorobenzene 2,4-Dinitrobluene	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U	% % % % % mg/L mg/L							Spike	%Rec 94990 70 96				MS	RPD	Qualifier
Compound Perent Somple Number 2-Fluoroblphenyl (surroz 2-Fluorophenol (surroz Nitrobenzene-d5 (surroz Phenol-d6 (surrozate) Terphenyl-d14 (surrozate) 1-4-Dichtorobenzene 2-4-Dinitroboluene Hexachlorobenzene	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U	% % % % mg/L mg/L							Spike	%Rec 94990 70 96 97				MS	RPD	Qualifiers
Compound 2-Fluorobiphenyl (surro 2-Fluorophenol (surro 2-Fluorophenol (surro 2-Fluorophenol (surro 2-Fluorophenol (surro 2-Fluorophenol (surro 1-4-Dichlorobenzene 2-4-Dinitrobiuene Hexachlorobenzene Hexachlorobusidiene	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U	% % % % mg/L mg/L mg/L							Spike	%Rec 94990 70 96 97 85				MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluoroblphenyl (surroz 2-Fluorophenol (surroz Phenol-d6 (surrogate) Terphenyl-d14 (surroz 2-4,6-Tribromophenol (1-4-Dichlorobenzene 2-4-Oniritrobluene Hexachlorobenzene Hexachlorobenzene	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.065 U 0.025 U	% % % % mg/L mg/L mg/L mg/L							Spike	70 96 97 85				MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluoroblphenyl (surroz 2-Fluorophenol (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surrogate) 2-4-6-Tribromophenol (1-4-Dichlorobenzene 4-4-Unitrobluene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.065 U 0.025 U 1.5 U	% % % % % mg/L mg/L mg/L mg/L mg/L							Spike	%Rec 94990 70 96 97 85 71 80				MS	RPD	Qualifier
Compound Perent Somple Number 2-Fluorobiphenyl (surroz 2-Fluorophenol (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d14 (surrogate) Terphenyl-d15 (surrogate) Terphenyl-d16 (surrogat	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.065 U 0.025 U 1.5 U 100 U	% % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L							Spike	%Rec 94990 70 96 97 85 71 80 95				MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluoroblphenyl (surrog 2-Fluorophenol (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surrog 2,4-Dintrobenzene 1,4-Dichlorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Mp-cresol Nitrobenzene o-cresol	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.065 U 0.025 U 1.5 U 100 U	% % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L							Spike	%Rec 94990 70 96 97 85 71 80 95 41				MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluoroblphenyl (surrog 2-Fluorophenol (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) Terphenyl-d14 (surrog 2,4,5-Tritromophenol (1,4-Dichtorobenzene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Map-cresol Nitrobenzene o-cresol Pentachlorophenol	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.065 U 0.065 U 0.025 U 1.5 U 100 U 100 U	% % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L						LCS	Spike	%Rec 94990 70 96 97 85 71 80 95 41 90				MS	RPD	Qualifier
Compound Perent Somple Number 2-Fluoroblphenyl (surro 2-Fluorophenol (surrog Nitrobenzene-d5 (surrog Phenol-d6 (surrogate) 1-erphenyl-d14 (surroga 24,6-Fritoromophenol (1,4-Dichtorobenzene 2,4-Dinitroboluene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Marcherosol Natrobenzene o-cresol Pentachlorophenol Pyridine	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 100 U 20 U 1.3 U	% % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L							Spike	74Rec 94990 70 96 97 85 71 80 95 41 90				MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluoroblphemyl (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol 1,4-Dichtorophenol 1,4-Dichtorobenz 2-4-Dinitroboluene Hexachlorobenz 4-Enachlorobenz 8-Peresol Nitrobar Peresol	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 100 U 20 U 1.3 U	% % % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L						LCS	Spika	%Rec 94990 70 96 97 85 71 80 95 41 90 36 82				MS	RPD	Qualifiers
Compound Perent Sample Number 2-Fluorobiphenyl (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol (surroz 2-Fluorophenol 2-4-B-ritroboruene 1-exachlorobenzene 1-exachlorobenzene 1-exachlorobenzene 1-exachlorobenzene 1-exachlorobenzene 1-exachlorophenol 2-fluorophenol	ogate) jate) ogate) ate)	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 100 U 20 U 1.3 U	% % % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L						LCS	Spike	74Rec 94990 70 96 97 85 71 80 95 41 90				MS	RPD	Qualifiers
Compound Perent Sample Number 2-Fluorobiphenyl (sumo 2-Fluorobiphenyl (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-4-B-rithorophenol e) pate) pate) ate) surrogate) D2672 TCLP-Pe	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 150 U 100 U 100 U 100 U 20 U 1.3 U 200 U 1.0 U	% % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Spike					LCS	Spike	70 96 97 85 71 80 96 97 81 80 95 41 90 36 82 91		*		MS	RPD	Qualifier	
Compound Perent Somple Number 2-Fluoroblphenyl (surroz 2-Fluoroblphenyl (surroz 2-Fluorophenol (surroz Phenol-d6 (surrogate) 1-erphenyl-d14 (surroz 2-d, 8-Tribromophenol 1, 4-Dichtorobenzene 2-d-Dinitrobluene Hexachlorobenzene Hexachlorobenzene Hexachlorobenzene Marcherosol Marcherosol Pentachlorophenol 2-d, 8-Trichlorophenol 2-d, 8-Trichlorophenol 3-d, 8-Trichlorophenol	ogate) pate) pate) pate) ste) ste) ste) ste) ste) ste) ste) s	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 1.0 U 100 U 20 U 1.0 U	% % % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Spike		%Rec			LCS	Spike	70 96 97 85 71 80 95 41 90 36 82 91	%Rec	*		MS	RPD	Qualifier
Compound Perent Sample Number 2-Fluorobiphenyl (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-Fluorophenol (sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 2-1-Fluorophenol sumo 3-1-Fluorophenol te) pate) pate) ate) surrogate) D2672 TCLP-Pe	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U 100 U	% % % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Spike	*Rec			RPD	LCS	Spike	70 96 97 85 71 80 95 41 90 36 82 91	%Rec	*		MS	RPD		
Compound Perent Semple Number 2-Fluoroblphenyl (surroz 2-Fluoroblphenyl (surroz 2-Fluorophenol (surroz Phenol-d6 (surrogate) 1-erphenyl-d14 (surrogate) 1-e	pgate) pate) pate) ate) surrogate) D2672 TCLP-Pe	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 100 U 20 U 1.0 U 20 U 1.0 U	% % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Spike	*Rec	*KRec	% RPp	RPD	imits	Spike	70 96 97 85 71 80 36 82 91 ssociated	*Rec	% RPD	RPDQC L	MS imits	RPD Dup	Qualifier
TestCode: Compound Perent Somple Number 2-Fluoroblphernyl (sumo 2-Fluoroblphernyl (sumo 2-Fluorophenol (sumo 2-Fl	pgate) pate) pate) ate) surrogate) D2672 TCLP-Pe	87 38 89 19 126 76 0.05 U 0.065 U 0.025 U 1.5 U 100 U 1.0 U 100 U 20 U 1.0 U	% % % % % % % mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Spike	*Rec	*KRec	% RPp	RPD	imits	Spike	%Rec 94990 70 96 97 85 71 80 95 41 90 36 82 91 \$	*Rec	% RPD	RPDQC L	MS imits	RPD Dup	

5460 Beaumont Center Blvd., Suite 520

Tampa, FL 33634.

Page QC-1 of 2

Email: Info@SunLabsInc.com Website: www.SunLabsInc.com

Quality Control Data

Project Number

TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

January 14, 2010

Test:	TCLP-Pes										Sample				
TestCode:		licides by Method	8081						9499)					
	TCLP-Pest														
Compound	700-765	Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC Limits-			NS Rec	MSD %Rec	RPD %	QC Limits RPD MS	Dup RPD	Qualifiers
Perent Sample Number		 	1		-				9	1090			····		1
ndrin		0.00009 U mg/L_						10	0 1	11			0-172		
leptachlor		0.00012 U mg/L						1 10	0	87			0-160		1
leptachfor epoxide		0.00011 U mg/L				·		10	0	81				1	ļ
indane		0.00012 U mg/L						1 10)	65			19-139	1	
Aethoxychlor .	· .	0.00009 U mg/L	_						<u> </u>	70				1	<u> </u>
oxaphene		0.002 U mg/L	_!											<u>i</u>	<u>!</u>
Batch No: est:	D2693 TCLP Vola	itiles by EPA Met	hod 8260)					Asso 9499		Samples	<u>. </u>			
estCode:	TCLP-V										<u>. </u>				
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	—QC Limits- RPD LCS			AS Rec	MSD %Rec	RPD %	—QC Limits— RPD MS	Dup RPD	Qualifiers
arent Sample Number			I					ī	9	4991				1	1
iromofiuorobenzene (s	surrogate)	94 %												<u> </u>	<u> </u>
ibromofluoromethane	(surrogate)	98 %						_1_							<u> </u>
oluene oB (surrogate)		92 %													<u> -</u>
enzene		0.10 U mg/L					<u> </u>	50	<u> </u>	94			58-142	<u> </u>	i
Butanone		0.40 U mg/L.						:50	<u> </u>	94				1	
arbon tetrachlonde		0.20 U mg/L					·	5	1	01					1
hlorobenzene		0.20 U mg/L	_l					5.5		94			67-120		
hioroform		0.10 U mg/L	<u> </u>					5		96					1
4-Dichlorohenzene		0.40 U mg/L						<u> </u>	<u> </u>	95				<u> </u>	
2-Dichloroethane		0.20 U mg/L						50	1	93_					ļ
1-Dichloroethene	······································	0.15 U mg/L	_					5		93			41-163		
etrachloroethene		0.25 U mg/L	_!					5		93					<u> </u>
richloroethene		0.20 U mg/L						5		94			23-180		
inyi chloride		0.09 U mg/L						1 5		91				<u> </u>	1
Batch No: Test: TestCode:	D2714 TCLP Herb 832	bicides by Metho	1 8321						A\$50 9499		Sample	s .			
Compound		Blank	LCS Spike	LCS XRec	LCSD %Rec	RPD %	QC Limits RPD LC			NS Rec	MSD %Rec	RPD	QC Limits RPD MS	Dup RPD	Qualifiers
arent Sample Number								1	ı	4990				į	1
4-Dichlorophenylacet	tic acid	72 %												<u> </u>	<u> </u>
,4-D		0.0016 U mg/L	5	88				5		84			0-157	<u> </u>	<u> </u>
.4,5-TP (Silvex)		0.0022 U mg/L	5	78				5		71			0-132	<u> </u>	<u> </u>
' indicates va	tue is outside contr	of limits for %Recovery o	greater than	accepta	nce criter	ia for RF	םים								•
Ţ				 -	Fo	otnote	s _.								

SunLabs, Inc. Chain of Custody

Client Name:	TASIC			SunLabs	Project	#	09	112	4	0.5	_			Project Name:	Chevron	Mando	
Contact:	SUSANTODIA			Bottle Typ		PG			-	1				Project #	602	5	
Address:	27751 Like to	TRI		Preservati		工				1				PO#			
	Mr Down to 32	757	1	Matrix		3								1			
Phone / Fax:	(780) 787-01-	7/		Analysis /	Method					1							
E-Mail:			- 1	Reque		remarks			ı	1 .		J	-	1			
, - ,						8	ļ	Į	1				ľ	Due Date Requ	ested:	·	1
Suffahis =	Sample Description	1.5	Sample	Sample	# of				ļ	1 .		J	ļ	j			j
Sample #		. [.	Date	Time	Bottles	36	i (·	ı					FDEP Pre	Approval site		1
	CO-GO-WC-01	Ь	123/01		2	2				†	- 			Curre		Old rates	j
euro e n	1/2 4/2		702101	1770				_	┪~					Cash rates			1
QUOC !						t				†		\neg		Remarks / Com			1.
			-			1			+							100	1/4
						\vdash				1				TCLPVO			
7												寸		TCLP N	letato,	TCLPF	esticida
					·									Terp			1
		<u>_</u>		-		-						∸∔			1		ļ
20-10 V 14-50						₩	\vdash				-			Beacy	why		·
THE THE WHIST COME	 					\vdash	\vdash	-	-+-	 	-	-		CAMPE	r. & A		Į.
G S S S S S S S S S S S S S S S S S S S	 					-		<u> </u>		+	-			Carlosi	y. 7		İ
						-	\vdash										
						-				 	-						ł
Shirt San Andrews	/AL.	1-11	4 10 000 1				<u> </u>	Stran is aceo	No Selection	E CONTRACT	ತ್ರವಾಗಿ ಹಿಂದಿ ಪ್ರವಾಧ ಹಿಂದಿ				GNO - AND AND AND AND AND AND AND AND AND AND	in and the same	-
Sampler Signator	Date:	Printed Name					1							HE RIGHT TO E			
17710	Le 1275-09	1 14	Hz.	où /	TASK	سا		Reling			KNEU		RLES AN Relinquisi	D TO RETURN	Date:	Time:	<u> </u>
Bottle Type Codes:		Preservative Code								-,.		ĺ	, ioqu.o.				İ
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochloric	Acid + Ice	S = Sulfuric	Acid + loe			_	_		١.]		_	İ		ļ
GA = Glass Amber	T = Todiar Bag	i = ice only		VS = MeOH	, OFW, + Ico			Relinqu	Jshed I	3y/	Γ		Relinquisi	ned To:	Date:	Time:	1
P = Plastic	O = Other	N = Nitric Acid + i	ce.	O = Other (S	Specify)				المرا		1.	I	4	64	12/23	1500	
S = Soil Jar								<	10	(0	<u> </u>		rec	764	1-1-7		
Matrix Codes:	SO = Soil	atoma U. Con		and the	(建造)	STATE OF	淵	Reling	ished l	By:			Relinquisi	ned/To:	Date:	Time:	
A = Air	SOL = Solid	Seinple Gondition						\mathcal{I}	d	61	•	\rightarrow	$\mathcal{Q}_{\mathcal{A}}$.	talmer	12/24	1115	ļ ·
DW = Drinking Water	SW = Surface Water	Custody Seals on			YINIO		il in	7	<u></u>	<u> </u>					1010	1113	4
GW = Ground Water	W = Water (Blanks)	Specific Marie	NACOHE SHOULE	The state of the s	ONIN			Relinqu	ished l	Ву:			Reilnquisi	ied To:	Date:	Time:	İ
SE = Sediment	O = Other (Specify)	Semple contained			(A)NIN							Ì					
		Sample which	dding lines	建設計	O N/N	1000						1			<u> </u>	<u> </u>	.)
Temp.	DEPLY	Sumolent volume	VICE 13 VI	Transaction of American	M M (C)	12.151.1								abs, Inc.			
福建縣所有為	HE STATE OF THE ST	An Viole head sha		- Part - 11 11 11 11 11 11 11 11 11 11 11 11 1		9	Marie P		54	60 Bea	•			Suite 520, Tamp		34	
Received on	ce 7 = 2) N Z (NA	Proper Containers	end preser	vatives?	MIN	1790	题			o-mai				01 / Fax: 813-35		•	
理論語為清楚		1669年	4. 排源	25年1			11.11	<u> </u>		e-mai	i. 1110@	gour	icanollic.(om www.Sun	Lausinic.CUIII		II -

January 14, 2010

Susan Tobin TASK Environmental , Inc. 27751 Lake Jem Road Mount Dora, FL 32757

Re:

SunLabs Project Number:

091224.05

Client Project Description:

Chevron Orlando

Dear Mrs. Tobin:

Enclosed is the report of laboratory analysis for the following samples:

Sample Number	Sample Description	Date Collected
94989	CO-SO-WC-01	12/23/2009
94990	TCLP Leachate/94989 (CO-SO-WC-01)	•
94991	TCLP ZHE Leachate/94989 (CO-SO-WC-0	

Copies of the Chain(s)-of-Custody, if received, are attached to this report.

If you have any questions or comments concerning this report, please do not hesitate to contact us.

Sincerely,

Michael W. Palmer

Vice President, Laboratory Operations

Enclosures

SunLabs Project Number TASK Environmental, Inc.

091224.05

Project Description
Chevron Orlando

January 14, 2010

SunLabs Sample Number Sample Designation

94989 CO-SO-WC-01 Matrix

Soil

Date Collected

12/23/2009 13:30

Date Received

12/24/2009 11:15

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
Total Cyanide									
Date Analyzed			1/5/10	1				01/05/10 17:24	
Cyanide, Total	9012A	mg/kg	0.869 U	1	0.869	1.0		01/05/10 17:24	
pH .									
pH, Solid	9045	SU	7.9	1				01/04/10	01/04/10
Sulfide									
Date Analyzed			12/29/09	1				12/29/09 13:50	
Sulfide	9030A	mg/kg	3.80 U	1	3.80	25		12/29/09 13:50	
TCLP Extraction									
Date Leached - TCLP	1311		12/28/09	1				12/28/09 17:00	
TCLP-Zero Headspace Extraction									
Date Leached	1311	•	12/30/09	1				12/30/09 15:00	12/30/09

SunLabs Project Number

091224.05

TASK Environmental, Inc.

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number

Sample Designation

94990

TCLP Leachate/94989 (CO-SO-WC-01)

Matrix

TCLP Leachate

Date Collected

Date	Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Metals			ı				-		
Date Digested	3005		12/30/2009				· ·		12/30/09 09:20
Date Analyzed	6010		12/30/2009	1				12/30/09 17:08	
Arsenic	6010	mg/L	0.1 U	1	0.003	0.1	7440-38-2	12/30/09 17:08	12/30/09 09:20
Barium	6010	mg/L	0.1 U	1	0.001	0.1	7440-39-3	12/30/09 17:08	12/30/09 09:20
Cadmium	6010	mg/L	0.1 U	1	0.0006	0.1	7440-43-9	12/30/09 17:08	12/30/09 09:20
Chromium	6010	mg/L	0.1 U	1	0.0035	0.1	7440-47-3	12/30/09 17:08	12/30/09 09:20
Lead	6010	mg/L_	0.1 U	1	0.0022	0.1	7439-92-1	12/30/09 17:08	12/30/09 09:20
Selenium	6010	mg/L	0.1 U	1	0.0047		7782 -49 -2	12/30/09 17:08	12/30/09 09:20
Silver	6010	mg/L	0.1 U	1	0.0032	0.1	7440-22-4	12/30/09 17:08	12/30/09 09:20
TCLP Herbicides by Method 8321									
Date Extracted	8321		01/05/10						01/05/10 18:30
Date Analyzed	8321		01/13/10	1				01/13/10 12:46	
2,4-Dichlorophenylacetic acid	8321	. %	71	10			DEP-SURR-	01/13/10 12:46	01/05/10 18:30
2,4-D	8321	mg/L	0.016 U	10	0.016	50	94-75-7	01/13/10 12:46	01/05/10 18:30
2,4,5-TP (Silvex)	8321	mg/L	0.022 U	10	0.022	5	93-72-1	01/13/10 12:46	01/05/10 18:30
TCLP - Mercury									
Date Digested	7470		12/29/2009						12/29/09 14:30
Date Analyzed	7470		12/30/09 S19	1				12/30/09 17:59	
Mercury	7470	mg/L	0.00020 U	11	0.00020	0.05	7439-97-6	12/30/09 17:59	12/29/09 14:30
TCLP-Pesticides by Method 8081									
Date Extracted	3510		01/05/10						01/05/10 16:45
Date Analyzed	8081		1/9/10	1				01/09/10 01:14	
Surrogate	8081	% .	74	1				01/09/10 01:14	01/05/10 16:45
Chlordane	8081	mg/L	0.0053 I	1 .	0.0001	0.03	57-74-9	01/12/10 16:08	01/05/10 16:45
Endrin	8081	mg/L	0.00009 U	1	0.00009	0.02	72-20-8	01/09/10 01:14	01/05/10 16:45
Heptachlor	8081	mg/L	0.00012 U	1	0.00012	0.008	7 6-44- 8	01/09/10 01:14	01/05/10 16:45
Heptachlor epoxide	8081	mg/L	0.00011 U	1	0.00011	0.008	1024-57-3	01/09/10 01:14	01/05/10 16:45
Lindane	8081	mg/L	0.00012 U	1	0.00012	0.4	58-89-9	01/09/10.01:14	01/05/10 16:45
Methoxychlor	8081	mg/L	0.00009 U	1	0.00009	0.1	72-43-5	01/09/10 01:14	01/05/10 16:45
Toxaphene	8081	mg/L	0.002 U	1 .	0.002	0.03	8001-35-2	01/09/10 01:14	01/05/10 16:45
TCLP Semivolatiles by Method 8270	•								
Date Extracted	3510		01/05/10						01/05/10 16:45
Date Analyzed	8270		1/8/10	1				01/08/10 21:21	
2-Fluorobiphenyl (surrogate)	8270	%	87	1			321-60-8	01/08/10 21:21	01/05/10 16:45
2-Fluorophenol (surrogate)	8270	%	29	1			367-12-4	01/08/10 21:21	01/05/10 16:45
Nitrobenzene-d5 (surrogate)	8270	%	589	1				01/08/10 21:21	01/05/10 16:45
Phenol-d6 (surrogate)	8270	· %	18	1				01/08/10 21:21	01/05/10 16:45
Terphenyl-d14 (surrogate)	8270	%	149	1				01/08/10 21:21	01/05/10 16:45
2,4,6-Tribromophenol (surrogate)	8270	<u> </u>	58	1			118-79-6	01/08/10 21:21	01/05/10 16:45
1,4-Dichlorobenzene	8270	mg/L	0.05 U	1	0.05	0.1	106-46-7	01/08/10 21:21	01/05/10 16:45
2,4-Dinitrotoluene	8270	mg/L	0.065 U	<u>1</u>	0.065	0.13	121-14-2	01/08/10 21:21	01/05/10 16:45
Hexachlorobenzene	8270	mg/L	0.065 U	1	0.065	0.13	118-74-1	01/08/10 21:21	01/05/10 16:45

SunLabs, Inc.

5460 Beaumont Center Blvd., Suite 520 Tampa, FL 33634

Laboratory ID Number - E84809

Phone: (813) 881-9401 Email: Info@SuntabsInc.com

Website: www.SunLabsInc.com

SunLabs Project Number TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number Sample Designation

94990

TCLP Leachate/94989 (CO-SO-WC-01)

Matrix

TCLP Leachate

Date Collected Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Semivolatiles by Method 8270									
Hexachlorobutadiene	8270	mg/L *	0.025 U	1	0.025	0.5	87-68-3	01/08/10 21:21	01/05/10 16:45
Hexachloroethane	8270	mg/L	1.5 U	1	1.5	3	67-72-1	01/08/10 21:21	01/05/10 16:45
m&p-cresol	8270	mg/L	100 U	1	100	200		01/08/10 21:21	01/05/10 16:45
Nitrobenzene	8270	mg/L	1 U	1	1_	2	98-95-3	01/08/10 21:21	01/05/10 16:45
o-cresol	8270	mg/L	100 U	1	100	200	95-48-7	01/08/10 21:21	01/05/10 16:45
Pentachlorophenol	8270	mg/L	20 U	1	20	100	87-86-5	01/08/10 21:21	01/05/10 16:45
Pyridine	8270	mg/L	1.3 U	1	1.3	2.5	110-86-1	01/08/10 21:21	01/05/10 16:45
2,4,5-Trichlorophenol	8270	mg/L	200 U	1	200	400	95-95-4	01/08/10 21:21	01/05/10 16:45
2,4,6-Trichlorophenol	8270	mg/L	1 U	1	1	2	88-06-2	01/08/10 21:21	01/05/10 16:45

SunLabs Project Number

091224.05

TASK Environmental, Inc.

Project Description

Chevron Orlando

January 14, 2010

SunLabs Sample Number Sample Designation

94991

TCLP ZHE Leachate/94989 (CO-SO-WC-

01)

Matrix

TCLP ZHE Leachate

Date Collected Date Received

Parameters	Method	Units	Results	Dil Factor	MDL	RL	CAS Number	Date/Time Analyzed	Date/Time Prep
TCLP Volatiles by EPA Method 826	6 0								
Date Analyzed			01/06/10	1				01/06/10 17:42	
Bromofluorobenzene (surrogate)	8260	%	96	1			460-00-4	01/06/10 17:42	
Dibromofluoromethane (surrogate)	8260	%	98	1			•	01/06/10 17:42	
Toluene-d8 (surrogate)	8260	%	91	1			2037-26-5	01/06/10 17:42	
Benzene	8260	mg/L	0.1 U	1	0.1	0.5	71-43-2	01/06/10 17:42	
2-Butanone	8260	mg/L	0.88 I	1	0.4	2	78-93-3	01/06/10 17:42	
Carbon tetrachloride	8260	mg/L	0.2 U	.1	0.2	0.8	56-23-5	01/06/10 17:42	
Chlorobenzene	8260	mg/L	0.2 U	1	0.2	0.8	108-90-7	01/06/10 17:42	
Chloroform	8260	mg/L	0.1 U	1	0.1	0.5	67-66-3	01/06/10 17:42	
1,4-Dichlorobenzene	8260	mg/L	0.4 U	1	0.4	1.6	106-46-7	01/06/10 17:42	
1,2-Dichloroethane	8260	mg/L	0.2 U	1	0.2	0.8	107-06-2	01/06/10 17:42	
1,1-Dichloroethene	8260	mg/L	0.15 U	1	0.15	0.6	75-35-4	01/06/10 17:42	
Tetrachloroethene	8260	mg/L	0.25 U	1	0.25	1	127-18-4	01/06/10 17:42	
Trichloroethene	8260	mg/L	0.2 U	1	0.2	0.8	79-01-6	01/06/10 17:42	
Vinyl chloride	8260	mg/L	0.09 U	i	0.09	0.5	75-01 -4	01/06/10 17:42	

SunLabs Project Number

TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

January 14, 2010

Footnotes SunLabs is not currently NELAC certified for this analyte. The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. LCS Laboratory Control Sample LCSD Laboratory Control Sample Duplicate MΒ Method Blank MS Matrix Spike MSDMatrix Spike Duplicate NA Sample not analyzed at client's request. Sample held beyond the accepted holding time. 0 RL RL(reporting limit) = PQL(practical quantitation limit). RPD Relative Percent Difference 519 Analysis performed by Millenium Laboratories, Inc. NELAC# E84899. Compound was analyzed for but not detected. Indicates that the analyte was detected in both the sample and the associated method blank.

Quality Control Data

Project Number

TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

·													Ja	anuar	y 14, 201
Batch No:	D2604								Α.	ssociated	i Samples				
Test:	TCLP - Mer	20117								4990					
		cury							-						
TestCode:	TCLP-Hg														
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC Li RPD	mits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC Limits RPD MS	Dup RPD	Qualifiers
Parent Sample Number			******						-	94990		-			:
Mercury		0.00016 U mg/L	<u>:</u>						0.010	87		_	 		:
Batch No:	D2621										Samples	3			
Test:	TCLP Meta	ls							94	1990					
TestCode:	TCLP-7														
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC LI RPD	nits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC Limits RPD MS	Dup RPD	Qualifiers
Parent Sample Number										94900					
Arsenic	<u>_</u>	0.1 U mg/L							1000	97			74-113		<u>:</u>
Barium		0.1 U mg/L	;		:				1000	97			71-121		4
Cadmium		0.1 U mg/L	1						1000	103			68-113		ļ
Chromium		0.1 U mg/L		<u> </u>					1000	102			61-126		
.ead	·i	0.1 U mg/L	:					- :	1000	99			61-115		
Selenium Silver		0.1 U mg/L 0.1 U mg/L					•		1000	104 90			73-114 68-112		<u> </u>
		U. I O Hight	-!						1000				00 112		'
Batch No:	D2671				•					ssociated 1990	Samples	.			
Test:		volatiles by Metho	od 82/0	l					ĺ						
estCode:	TCLP-SV								, i				 		
Compound	:	Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC LI RPD	nits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC Limits RPD MS	Dup RPD	Qualifiers
Parent Sample Number					_	-			!	94990					
2-Fluorobiphenyt (surro	gate)	87 %	.!						4						
2-Fluorophenol (surrog	ate)	38 %	. <u> </u>				-		<u></u>						
Nitrobenzene-d5 (surro	gate)	89 %							 						<u>: </u>
Phenol-d6 (surrogate)		19 %													·
Terphenyl-d14 (surroga		126 %							ļ						i
2,4,6-Tribromophenol (s	surrogate)	76 %	· -												
,4-Dichlorobenzene	<u></u>	0.05 U mg/L							50	70					·····
,4-Dinitrotoluene		0.065 U mg/L							50 50	96_ 97					
lexachlorobenzene		0.065 U mg/L	i						50	97 85					.'
fexachlorobutadiene fexachloroethane		0.025 U mg/L							50	03					
		1.5 U mg/L 100 U mg/L							50	80					-
n&p-cresol litrobenzene		100 U mg/L 1.0 U mg/L	- 						50	95					
-cresol	 	100 U mg/L							50	41 .			- -	_	
entachlorophenol		20 U mg/L	1						50	90					·· · · · · · · · · · · · · · · · · · ·
		1.3 U mg/L	1						50	36					-:
yriaine ,4,5-Trichlorophenol		200 U mg/L							50	82					*
4,6-Trichlorophenol	·	1.0 U mg/L							50	91					
Batch No:	D2672			_				-			Samples	<u> </u>			
est:	TCLP-Pesti	cides by Method	8081						94	1990					
TestCode:	TCLP-Pest								i_						
Compound		Blank	LCS Spike	LCS %Rec	LCSD %Rec	RPD %	QC Lii RPD	nits LCS	MS Spike	MS %Rec	MSD %Rec	RPD %	QC Limits RPD MS	Oup RPD	Qualifiers
Parent Sample Number			i -						:	94990					i
Surrogate		69 %	-			_									ļ
Chlordane		0.0001 U mg/L]												

SunLabs, Inc.

5460 Beaumont Center Blvd., Suite 520

Tampa, FL 33634

Laboratory ID Number - E84809

Page QC-1 of 2

Phone: (813) 881-9401 Email: Info@SunLabsInc.com

Website: www.SunLabsinc.com

Quality Control Data

Project Number

TASK Environmental, Inc.

091224.05

Project Description

Chevron Orlando

January 14, 2010

											Samples				
TCLP-Pest	licides by I	Method	8081						94	990					
TOLF-FEST	- Dien		ICS	100	1000	PPD.		l imite	he	Mc	Men	DBD	OC I lenite	Due	Qualifiers
	DIBII	IN.	Spike			%	RPD	LCS	Spike	%Rec	%Rec	% %	RPD MS	RPD	Qualiters
	,		T						I	94990					i
	0.00009 U	mg/L							100	<u> 111 </u>			0-172		<u> </u>
· · · · · · · · · · · · · · · · ·	0.00012 U	mg/L	.				· · · · · · · · · · · · · · · · · · ·						0-160		į
	0.00011 U	_mg/L_							100	81					
	0.00012 U	mg/L							100				19-139		L
	0.00009 U	_mg/L	_						100	_70_					ļ
	: 0,002 U	mq/L							<u></u>						<u>i </u>
D2693									٨	cociatod	Samples				
				_							oaithies	··			
TCLP Vola	itiles by EF	'A Meth	od 8260)					. ,						
TCLP-V									<u>. </u>						
	Blan	k	LCS	LCS	LCSD	RPD	OC	Limits	MS	MS	MSD	RPD	QC Limits	Dup	Qualifiers
	:		Spike	%Rec	%Rec	%	RPD	LCS	Spike	%Rec	%Rec	%	RPD MS	RPD	
			 						Ţ	94991					-
irrogate)	94	%							1						
		%									-				i
	92	%	T						1						1
									50	94			58-142		
	0.40 U		i						50	94					1
	0.20 U	ma/L	!						50	101					ì
									50	94			67-126		
			-						50	96					
	0.40 U	mg/L							50	95					
	0.20 U	mg/L	Ţ						50	93					i
									50	93		· · ·	41-163		
									50	93					
			T						50	94			23-180		1
	,								50	91					i
D2744															
									,		Samples	<u>.</u>			
TCLP Hert	oicides by	Method	8321						:94	1990					
	-								i			•			
CCL FICID-032			LCC	100	1.000	anc		Limite	ue	ше	Men	DDC	OC Limbs	Due	Qualifiers
	: Bian	ia.												RPD	Qualifiers
	!		; Op.	,4.150			- NED		1 570				HIS		!
acid	72	94	1						i	34330					!
<u> </u>	. 0,0016 U	mg/L	5	88					- 	84			0-157		
	D2693 TCLP Vola TCLP-V Irrogate) Surrogate) D2714 TCLP Hert	CLP-Pest Blan	CLP-Pest Blank	Blank LCS Spike	CLP-Pest Blank	CLP-Pest Blank	Blank	Blank	Blank	Blank	Blank	Blank	Blank	Blank	Blank

* indicates value is outside control limits for %Recovery or greater than acceptance criteria for RPD

Footnotes

U

Compound was analyzed for but not detected.

SunLabs, Inc. Chain of Custody

Client Name:	TASIC		SunLabs	s Project	# (091	22	4.0	5	•		Project Name:	Chevror	20 Mando	
Contact:	SUSANTODIA		Bottle Typ		AG							Project #:	602	15	
Address:	21751 Like te	nPd	Preservati	ive	工										
_	Mr Down to 32	757	Matrix		3							-			·
Phone / Fax:	(782) 787-01-	71	Analysis /	Method	18							٠,			
E-Mail:			Requ	ested	8	ļ	1	1		- }	1 1				
					remarks				- 1		1 1	Due Date Requ	ested:		1
Suntains	Sample Description	Samp	le Sample	# of			- 1			ł					
Sample #	, , , , , , , , , , , , , , , , , , , ,	Date	I '	Bottles	366		ľ		ŀ	-	1 1	FDEP Pre	Approval site	·	1
	CO-GO-WC-01	12/23/		2	2		\top			\dashv		Curre		Old rates	
dudan	<u> </u>	- VP/22/	1770		12					_		Cash rates			1
QUOC L			_	 	† †		+-					Remarks / Com		-	1
					+		+	-	\dashv		 			. 00-	1/1
				 	+ +	-+	+-		_		 	- ICLP VO	$X_{s'}$	croem	-vois
					 	-	+-					TCLP N	Jolaka.	TOIDE	balinidas
				-	1 - 1	-	+			. -	-				1311406
					1 1	\dashv	-				 -	TCUP	Horbica	ides:	ļ
	· · · · · · · · · · · · · · · · · · ·			·	+ +	-	+		_					•	1
					+		+-				 	Reacy	with		
			 		+	_	+-		-		 	1 Compan	5.4V		1
				 	+ +	_				- -	 	1	· /		
				 	 						 	+			
	····			 	+		+	┝─┤			 	-			ŀ
Sampler Signature	Data	Printed Name / Affi	listion:	<u> </u>	اـــــــــــــــــــــــــــــــــــــ	્દ્	AHE 112	Si ikn	Not-	Noses	enovee:	HERIGHT TO E	MA LABAINI	reen sales	
Sampler Signature	12.12.00	I I	ilaliuii.		,	200						ND TO RETURN			·
7/10	Le 12-22-09	1 14th	ibil	1471			elinquist			res by	Relinguis		Date:	Time:	1
Bottle Type Codes:		Preservative Codes:					alliquisi	ieu by	•		Kemiqui	sileu 10.	Date.	Timbe.	
GV = Glass Vial	GVS = Low Level Volatile Kit	H = Hydrochloric Acid +	lce S = Sulfurio	Acid + Ice					\sim]		J .]
GA = Glass Amber	T = Tedlar Bag	I = Ice only	VS = MeOH	I, OFW, + Ice		Re	elinguist	ed By	7		Relinquis	shed To:	Date:	Time;	1
P = Plastic	O = Other	N = Nitric Acid + Ice	O = Other (1	Ш.			ــــــــــــــــــــــــــــــــــــــ		12/23	1500	
S = Soll Jar			·				47	1110	سامحن	•	1 10	det	11010		ļ
Matrix Codes:	SO = Soil	memal use only		化加州		Re	elinquist	ed By	:		Relinquis	shed/To:	Date:	Time:	Î
A = Air	SOL = Solid	Sample Condition Upon	GOOD!				Fea	1 3	61		QA.	filmer	12/24	1115	
DW = Drinking Water	SW = Surface Water	Chico, Stan Mesery	THE TOTAL THE TOTAL	A AN IN		類			<u> </u>		<u> </u>	wer to	10101	1113	1
GW = Ground Water	W = Water (Blanks)	Shipping Billian areas		CODE IN	- 13112	Re	elinquist	ned By	:		Relinquis	shed To:	Date:	Time:	
SE = Sediment	O = Other (Specify)	Semple containers intact		(C) N. W.	Product N	100]		}		
		Samples within holding to		(O) N LI							<u> </u>			<u> </u>	1
Temp	DHOW	Bullican Column on all	inalyses?	(D) N/A							Suni	abs, Inc.			1
		Are vials head space fro		, 41	D	Till I		5460				, Suite 520, Tamp	•	34	1
Received on I	ce/Y) N / NA	Proper Containers and pr	eservatives?					_				101 / Fax: 813-35			
理論學是是話			學學學的學			nii II		e	-maii:	1110@2	INCADSING	.com www.Sun	Labsinc.com		

ARCADIS

Appendix E

Soil Geotechnical Data Analysis Laboratory Report

Project No.:

0110.0800856.0000

Date Typed:

November 18, 2008

Field and Laboratory Report Cover Page

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

As requested, a representative of Universal Engineering Sciences, Inc. (UES) was at the referenced project to provide construction materials testing services.

Scope of Work

Report No.	Type of Report
733942, 733944, 733945, 733949, 733951, 733956, 733957, 733963, 733964	Sieve Analysis/Additional Testing

The results of the observations and or tests are summarized on the attached sheets. We hope this information is sufficient for your immediate needs. If you have any questions, please do not hesitate to contact the undersigned.

cc:

Client (2)

Attachments: (9)

Reviewed By,

Universal Engineering Sciences, Inc.

C.O.A. Nolly0000549,

Signature Date:

Vice President - Construction Services

STATE OF FLORIDA

Professional Engineer No. 38818

3532 Maggie Blvd. • Orlando, Fl 32811 • (407) 423-0504 • Fax (407) 423-3106

Project No.:

0110.0800856,0000

Report No ..:

733942.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location .:

SB-112, Zone 1 at 0850

Date Tested:

11/12/08

Sample No.:

Tested by:

Nancy Dorrow

Depth:

2-2,5'

SIEVE	ANALYSIS
Sieve No.	% Passing
No. 4	100
No. 10	100
No. 40	97.5
No. 60	96.6
No. 100	63.9
. No. 200	9.6

Additiona	Additional Testing								
Test Description	Results								
Moisture Content (%)	10.0								
Permeability (ft / day)	12.4								
Wet Density (lbs / ft ³)	95.5								
Dry Density (lbs / ft ³)	87.1								
Porosity (%)	53.3								

Project No.:

0110.0800856.0000

Report No ..:

733944.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835 .

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location .:

SB-112, Zone 2 at 0852

Date Tested:

11/12/08

Sample No.:

2

Tested by:

Nancy Dorrow

Depth:

3.5-4'

SIEVE A	NALYSIS
Sieve No.	% Passing
No. 4	100
No. 10	100
No. 40	99.3
No. 60	96.9
No. 100	62.2
No. 200	5.4

Ad	Additional Testing								
Test Description	-	Results							
Moisture Content (%)		5.2							
Permeability (ft / day)		8.6							
Wet Density (lbs / ft ³)		99.3							
Dry Density (lbs / ft ³)		94.2							
Porosity (%)		60.0							

Project No.:

0110.0800856.0000

Report No ..:

733945.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location.:

SB-112, Zone 3 at 0856

Date Tested:

11/12/08

Sample No.:

Tested by:

Nancy Dorrow

Depth:

6-6.5

	SIEVE ANAL	YSIS
Sieve No.	- 19 m	% Passing
No. 4		100
No. 10		100
No. 40		99.5
No. 60		97.7
No. 100		67.0
No. 200		17.5

Additional Testing	
Test Description	Results
Moisture Content (%)	28.4
Permeability (ft / day)	2.4
Wet Density (lbs / ft ³)	112.6
Dry Density (lbs / ft³)	95.9
Porosity (%)	43.3

0110.0800856.0000

Project No.: Report No ..:

733949.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location.:

SB-111, Zone 1 at 0930

Date Tested:

11/13/08

Sample No.:

Tested by:

Nancy Dorrow

Depth:

2-2.5'

SIEVE ANALYSIS		
Sieve No.	% Passing	
No. 4	97.4	
No. 10	93.1	
No. 40	. 86.6	
No. 60	82.9	
No. 100	56.1	
No. 200	14.1	

Additional Testing	
Test Description	Results
Moisture Content (%)	14.3
Permeability (ft / day)	6.3
Wet Density (lbs / ft ³)	83.1
Dry Density (lbs / ft³)	72.8
Porosity (%)	43.3

Project No.:

0110.0800856.0000

Report No ..:

733951.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location .:

SB-111, Zone 2 at 0935

Date Tested:

11/13/08

Sample No.:

5

Tested by:

Nancy Dorrow

Depth:

4-4.5'

SIEVE ANALYSIS		
Sieve No.	% Passing	
No. 4	100	
No. 10	100	
No. 40	99.4	
No. 60	96.7	
No. 100	64.0	
No. 200	9.0	

Additional Testing	
Test Description	Results
Moisture Content (%)	9.2
Permeability (ft / day)	4.1
Wet Density (lbs / ft ³)	116.4
Dry Density (lbs / ft ³)	107.1
Porosity (%)	56.0

Project No.:

0110.0800856.0000

Report No ..:

733956.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location.:

SB-111, Zone 3 at 1000

Date Tested:

11/13/08

Sample No.:

6

Tested by:

Nancy Dorrow

Depth:

6-6.5'

SIEV	SIEVE ANALYSIS		
Sieve No.	% Passing		
No. 4	100		
No. 10	100		
No. 40	99.3		
No. 60	96.8		
No. 100	57.1		
No. 200	9.8		

Additional Testing	
Test Description	Results
Moisture Content (%)	25.2
Permeability (ft / day)	3.1
Wet Density (lbs / ft ³)	111.3
Dry Density (lbs / ft³)	101.4
Porosity (%)	46.7

Project No.:

0110.0800856.0000

Report No..:

733957.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location.:

SB-110, Zone 1 at 1030

Date Tested:

11/14/08

Sample No.:

_

Tested by:

Nancy Dorrow

Depth:

1.5-2'

SIEVE ANALYSIS		
Sieve No.		% Passing
No. 4		100
No. 10		99.2
No. 40		97.4
No. 60		94.2
No. 100		63.5
No. 200		15.1

Additional Testing	
Test Description	Results
Moisture Content (%)	17.5
Permeability (ft / day)	2.6
In-Place Wet Density (lbs / ft³)	79.6
In-Place Dry Density (lbs / ft ³)	69.2
Porosity (%)	50.0

Project No.:

0110.0800856,0000

Report No ..:

733963.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location .:

SB-110, Zone 2 at 1038

Date Tested:

11/14/08

Sample No.:

Tested by:

Nancy Dorrow

Depth:

3.5-4

SIEVE A	SIEVE ANALYSIS		
Sieve No.	% Passing		
No. 4	100		
No. 10	100		
No. 40	99.4		
No. 60	96.8		
No. 100	63.6		
No. 200	9.9		

Additional Testing		
Test Description	Results	
Moisture Content (%)	7.4	
Permeability (ft / day)	3.7	
Wet Density (lbs / ft ³)	112.6	
Dry Density (lbs / ft ³)	102.4	
Porosity (%)	45.0	

Project No.:

0110.0800856.0000

Report No..:

733964.1

Date:

November 18, 2008

SIEVE ANALYSIS / ADDITIONAL TESTING

Client:

Pharos

Attn: Jeremy Jones

6996 Piazza Grande Avenue, Suite 305

Orlando, Florida 32835

Project:

Chevron, Superfund Site, 3100 North Orange Blossom Trail, Orlando, Orange County, Florida

Location.:

SB-110, Zone 3 at 1043

Date Tested:

11/14/08

Sample No.:

_

Tested by:

Nancy Dorrow

Depth:

6-6.5'

SIEVE ANALYSIS		
Sieve No.		% Passing
No. 4		100
No. 10		100
No. 40		99.4
No. 60		96.9
No. 100		58.1
No. 200		11.8

Additional Testing	
Test Description	Results
Moisture Content (%)	33.5
Permeability (ft / day)	15.1
Wet Density (lbs / ft ³)	103.1
Dry Density (lbs / ft ³)	92.2
Porosity (%)	56.7